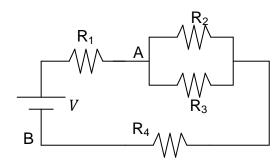
Electrodinámica

Ejercicio 1: un alambre de longitud L y resistencia $R=6\Omega$ se estira hasta una longitud 3Lconservando invariante su masa. Calcule la resistencia del alambre una vez estirado.

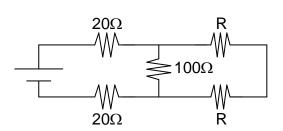

 $R' = 54\Omega$

Ejercicio 2: un bobinado de alambre de cobre de 1mm² de sección (a 20°C la resistividad del cobre vale ρ_{Cu} = 1,7×10⁻⁸ Ω m) tiene 5000 vueltas de 10 cm de longitud cada una. Después de algunas horas de trabajo continuo su resistencia aumenta a R=10, 2Ω . Calcule el aumento de temperatura del bobinado para $\alpha = 3.9 \times 10^{-3}$ ° C⁻¹.

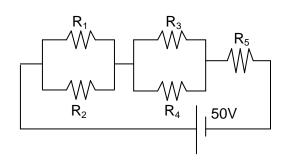
∆T~31°C

Ejercicio 3: en el circuito de la figura la tensión aplicada es de 58 V. Para R_1 =4 Ω , R_2 =10 Ω , $R_3=15\Omega$

- a) calcule el valor de la resistencia equivalente;
- b) calcule el valor de la intensidad de corriente que circula por cada resistencia;
- c) calcule el valor de la caída de potencial en cada una de ellas;
- d) calcule la potencia disipada en cada resistencia;
- e) compare la potencia entregada por la fuente con la disipada por la resistencia equivalente;
- f) estime la cantidad de electrones que la batería "bombea" por segundo.
- a) R_{eq} =29 Ω b) i_{CIRC} = i_1 = i_2 = i_3 = 2A c) V_{R1} =8V V_{R2} =20V V_{R3} =30V
- d) $P_{R1} = 16W$ $P_{R2} = 40W$ $P_{R3} = 60W$ e) $P_{FUENTE} = 58V \times 2A = 116W = P_{R1} + P_{R2} + P_{R3}$
- f) $n = 1.25 \times 10^{19}$ electrones/seg

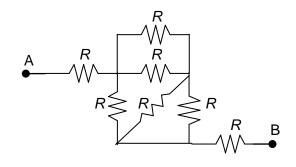

Ejercicio 4: En el circuito de la figura, la resistencia R₃ disipa 10 W. Para V = 133 V, $R_2 = 750 \Omega$, $R_3 = 250 \Omega$, $R_4 = 100 \Omega$, calcule

- a) el valor de R₁;
- b) la potencia total que disipa el circuito;
- c) la diferencia de potencial V_{AB}


a) 211Ω; b) 35,47 W; c) 76,67 V

Ejercicio 5: En el circuito de la figura, las resistencias de 20 Ω disipan, cada una de ellas, 0,45 W, en tanto que la de 100 Ω disipa 0,25 W. Calcule:

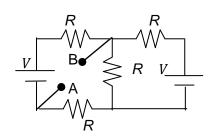
- a) el valor de R;
- b) la potencia disipada por cada resistencia R;
- c) la potencia entregada por la fuente;
- d) el valor de la ddp entregada por la fuente.
- a) R=25 Ω ; b) 0,25W cada una; c) 1,65W; d) 11V



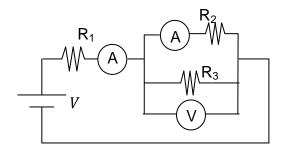
Ejercicio 6: dado el circuito de la figura, en el cual R₁= 30 Ω, R₂= 10 Ω, R₃= 40 Ω, R₄= 60 Ω y R₅= 100 Ω, calcule:

- a) la resistencia equivalente;
- b) la intensidad de corriente que circula por el circuito;
- c) la intensidad de corriente que circula por cada resistencia:
- d) la caída de potencial en cada resistencia;
- e) la potencia disipada por cada resistencia;
- f) la potencia entregada por la batería.

- a) $R_{eq} = 131,5 \Omega$
- b) $i_{CIRC}=0.38A$ c) $i_{R1}=0.095A$ $i_{R2}=0.285A$ $i_{R3}=0.228A$ $i_{R4}=0.153A$ $i_{R5}=0.38A$
- d) $V_{R1}=V_{R2}=2,88V$ $V_{R3}=V_{R4}=9,12V$ $V_{R5}=38V$
- e) P_{R1}=0,271W P_{R2}=0,812 W P_{R3}=2,1 W P_{R4}=1,4 W P_{R5}=14,43W
- f) P_{PILA}=19 W.



Ejercicio 7: dado el arreglo de la figura halle la resistencia equivalente entre A y B (todas las resistencias valen R)

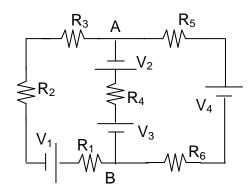

 $R_{eq} = 2.5R$

Ejercicio 8: sabiendo que $R=2\Omega$ y V=10V

- a) calcule la diferencia de potencial entre A y B;
- b) discuta y justifique en qué sentido circularía la corriente si los terminales A y B se cortocircuitaran.

a) V_{AB}=8V; b) circularía desde B hacia A.

Ejercicio 9: los instrumentos del circuito de la figura no son ideales. Los amperímetros tienen resistencia interna de 1Ω y el voltímetro tiene resistencia interna de $1 k\Omega$.


- a) justifique por qué el amperímetro debe conectarse en serie con la resistencia:
- b) justifique por qué el voltímetro debe conectarse en paralelo;

c) calcule la intensidad de la corriente que circula por cada resistencia y la ddp a la que se halla si no se conectan los instrumentos, para V=6V, $R_1=24\Omega$, $R_2=15\Omega$, $R_3=10\Omega$;

- d) indique cuánto marcan los instrumentos cuando se conectan, para los valores de tensión y resistencia dados en (c).
- a) porque al estar en serie le circula la misma corriente que a la resistencia;
- b) porque en paralelo está a idéntico potencial que la resistencia;
- c) i_{R1} = 0,2 A V_{R1} = 4,8 V; i_{R2} = 0,08 A V_{R1} = 1,2 V; i_{R3} = 0,12 A V_{R3} = 1,2 V.

de la energía;

d) el amperímetro en serie con R_1 indica i_{R1} = 0,193 A; el amperímetro en serie con R_2 indica i_{R2} = 0,0737 A; el voltímetro en paralelo con R_3 indica V_{R3} = 1,18 V.

Ejercicio 10: los valores de los diferentes elementos del circuito de la figura son: $R_1=5~\Omega$, $R_2=5\Omega$, $R_3=10~\Omega$, $R_4=20~\Omega$, $R_5=10~\Omega$, $R_6=10~\Omega$, $V_1=15V$, $V_2=5V$, $V_3=10V$ y $V_4=5V$. a) indique cuántas ecuaciones son suficientes para determinar las corrientes por cada resistencia aludiendo a la conservación

- b) indique cuántas ecuaciones son suficientes para determinar las corrientes por cada resistencia aludiendo a la conservación de la carga;
- c) calcule la corriente que circula por cada resistencia;
- d) calcule el trabajo requerido para transportar una carga $q=1\mu C$ entre A y B (en contra de la fuerza eléctrica).
- a) N=2; b) N=1
- c) $i_{R1} = i_{R2} = i_{R3} = 667 \text{mA}$ $i_{R4} = i_{R5} = i_{R6} = 333 \text{mA}$
- d) $W_{AB} = 1,67 \mu J$

Ejercicio 11: en régimen estacionario, la potencia que disipa la resistencia de 5Ω del circuito de la figura es 0,05W. En régimen estacionario:

- a) calcule el valor de V_2 ;
- b) calcule la potencia disipada por la resistencia de 120Ω :
- c) calcule la diferencia de potencial entre los puntos A y B;
- d) calcule la carga del capacitor;
- e) estime el tiempo que le lleva al circuito alcanzar el régimen estacionario.
- a) $V_2 = 7.5 \text{V}$
- b) $V_A V_B = 9.5 \text{V}$
- c) $P_{120} = 5.36$ W
- d) $Q_C = 28.5 \mu C$ e) t ~ 0.6 seg

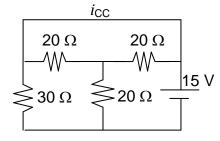
 170Ω

 V_2

 $40 \text{ k}\Omega$

3uF

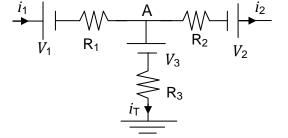
 5Ω

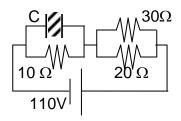

10V

В

 10Ω

 120Ω

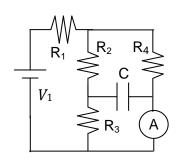

20 V


Ejercicio 12: calcule la intensidad de corriente que circula por el cortocircuito del arreglo de la figura.

$$i_{CC} = 0.75 \text{ A}$$

Ejercicio 13: dado el circuito de la figura, calcule la intensidad de la corriente derivada a tierra i_T y el potencial del punto A (respecto a tierra) para R_1 = 20 Ω , $R_2 = 50\Omega$, $R_3 = 40 \Omega$, $V_1 = 12V$, $V_2 = 6V$, $V_3 = 10V$, $i_1 = 12V$ 5A, $i_2 = 4A$.

 i_{T} = 1A, V_{A} =50V (respecto de tierra)

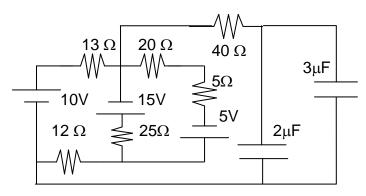


Ejercicio 14: el capacitor del circuito de la figura tiene, en vacío, capacidad C_0 = 25 μ F. Se rellena totalmente su espacio interplacas con un dieléctrico de constante ε_R = 20 y se lo conecta al circuito de la figura. Calcule la carga del capacitor una vez alcanzado el régimen estacionario.

Q=25000μC

Ejercicio 15: el circuito de la figura se halla en estado estacionario y el amperímetro marca 0,2A.

- a) En esas condiciones, calcule la potencia que disipa la resistencia
- b) se cambian la pila V_1 y la resistencia R_3 , dejando inalterada la lectura inicial del amperímetro (0,2A). En tales condiciones, la


corriente por R_1 es de 0,35A. Calcule la carga que tiene el capacitor en esta configuración.

$$R_1 = 16\Omega$$
 $R_2 = 15 \Omega$ $R_3 = 65\Omega$ $R_4 = 40\Omega$ $C = 20 \mu F$

a)
$$P_{R1}=1,44W$$
; b) Q=115 μ C

Ejercicio 16: La resistencia de 5Ω se halla sumergida en un recipiente que contiene 7g de aceite industrial (punto de fusión: –5°C; punto de ebullición: 380°C; c_{ACEITE}=0,4cal/g°C) a 25°C. El recipiente puede considerarse de equivalente en agua despreciable e idealmente adiabático. Calcule el tiempo que se requiere para llevar el aceite a 60°C.

t = 20,5 seg

Ejercicio 17: sea el circuito de la figura, en el que los capacitores están inicialmente descargados.

- a) calcule el valor de la intensidad de corriente que circula por cada resistencia, indicando el sentido de circulación;
- b) calcule la potencia disipada por la resistencia de 5Ω en régimen estacionario;
- c) calcule la energía almacenada en los

capacitores (en régimen estacionario);

d) estime el tiempo que le lleva al circuito alcanzar el régimen estacionario.

a)
$$i_{12}=i_{13}=533$$
mA $i_{20}=i_{5}=i_{R6}=66$ mA $i_{25}=466$ mA b) $P_{5}=21$ mJ c) $U=23,58$ µJ d) $t=1,21$ mseg

Ejercicio 18: a) las lámparas incandescentes de 12 V que generalmente usan los mecánicos se conectan a la batería del auto. Discuta qué le pasa a esa lámpara si usted la conecta a la línea domiciliaria (220 V).

- b) Calcule la relación L/S entre la longitud y la sección del filamento de una lámpara de tungsteno (ρ_W =5,25×10⁻⁸ Ω m) que opera a 12 V y disipa 60W.
- c) En su casa usted tiene conectados al mismo tiempo diversos aparatos eléctricos, cada uno con una determinada resistencia eléctrica interna ¿Están conectados en serie o están conectados en paralelo? La plancha, por ejemplo, "consume más" que el televisor, pero ¿consume más corriente o más tensión?
- a) La lámpara literalmente explota. b) L/S = $4,57 \times 10^7$
- c) Están conectados en paralelo (todos los aparatos se hallan a idéntico potencial, 220V)

Ejercicio 19: del siguiente conjunto de afirmaciones sólo una es verdadera. Indique cuál es

Dos resistencias iguales en serie con una pila disipan dos veces la potencia que disipan conectadas en paralelo a esa pila.
La resistencia de un cuerpo cilíndrico se duplica si se reduce su radio a la mitad.
Los dieléctricos con ε _{RELATIVO} < 1 son los mejores aislantes.
Dos resistencias iguales en serie con una pila disipan cuatro veces la potencia que disipan
conectadas en paralelo a esa pila.
La resistencia de un arreglo de resistores se duplica si se duplica la intensidad de la corriente.
La intensidad de corriente es una medida del número de electrones que circulan por un circuito.

Dos resistencias iguales en serie con una pila disipan cuatro veces la potencia que disipan conectadas en paralelo a esa pila.

Ejercicio 20: del siguiente conjunto de afirmaciones sólo una es verdadera. Indique cuál es

La caída de potencial es la misma sobre dos resistencias en serie.
Dos cuerpos tienen conductividades σ_1 y σ_2 = $2\sigma_1$, igual sección e igual longitud. Entonces R_2 = $2R_1$.
Dos resistencias en paralelo poseen resistencia equivalente mayor que la de ellas por separado.
La Req de tres resistencias iguales, de valor R, en serie es 3R y conectadas en paralelo es R/3.
Dos pilas ideales V ₁ y V ₂ en serie entregan más potencia que una única pila ideal de valor V ₁ +V ₂ .
Un nodo en un circuito es un punto al que entran dos o más corrientes de rama.

La Req de tres resistencias iguales, de valor R, en serie es 3R y conectadas en paralelo es R/3.