Open Source
Computer Vision
Library

Reference Manual

Copyright © 1999-2001 Intel Corporation
All Rights Reserved

Issued in U.S.A.

Order Number: 123456-001

World Wide Web: http://developer.intel.com

http://developer.intel.com

Version Version History Date

-001 Original Issue December 8, 2000

This OpenCV Reference Manual as well as the software described in it is furnished under license and may only be used or copied in accor-
dance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without
notice, and should not be construed as acommitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any
errors or inaccuracies that may appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in aretrieval system, or transmitted in any form or
by any means without the express written consent of Intel Corporation.

Information in thisdocument is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rightsisgranted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel

assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel productsincluding
ligbility or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellec-
tual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changesto
specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved” or "undefined." Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to
them.

The OpenCV may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Intel and Pentium are registered trademarks of Intel Corporation or its subsidiariesin the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2000-2001.

Contents

Chapter Contents

Chapter 1
Overview
ADOUL ThIS SOFIWAIEeiiiiiiiiii e 1-1
Why We Need OpenCV Librarycccocccoiiiiiiiiiie e 1-2
Relation Between OpenCV and Other Libraries...........cccceveveivinnnnn. 1-2
Data Types SUPPOITEAccoveiiiiiiiiiri bbb 1-3
Error Handlingoooooe e 1-3
Hardware and Software Requirementscccccevvveivmeivmeiieeiieennenne. 1-3
Platforms SUPPOIted.........ccoiieii e 1-4
About This Manual ... 1-4
Manual Organizationccoocooiiei e 1-4
FUuNCtion DeSCIPLIONSccoiieiii ittt 1-8
Audience for This Manualcccccociiiiiiiiii e 1-8
ON-lINE VEISION ..ttt et a e aeabee 1-8
Related Publicationsc.oocoiii e 1-8
Notational CoNVENLIONSccooiiiieii e 1-8
FONt CONVENLIONS ...t 1-9
Naming CONVENTIONSccoiiiiieieiieee bbb e 1-9
Function Name Conventionsccociiiiinirniiiiiiiiniireeeeeeieeeee 1-10
Chapter 2
Motion Analysis and Object Tracking
Background SUDLraCHONcooiiiiiiiiiieiee e 2-1
MOtiION TEMPIALES ... s 2-2

intgl. .

OpenCV Reference Manual Contents

Motion Representation and Normal Optical Flow Method 2-2
MOtioON RePreSentationcovvvviiieiiiiiiiiieeeee e, 2-2

A) Updating MHI IMagesS.......ccooviiiiiiiiiieeee e, 2-3

B) Making Motion Gradient Image ..o, 2-3

C) Finding Regional Orientation or Normal Optical Flow 2-6
MOLION SEPMENTALIONvveiiieiiiiiieiieeiieet et 2-7
CaMSITE. e, 2-9
Mass Center Calculation for 2D Probability Distribution 2-11
CamShift AIQOrthM 2-12
Calculation of 2D Orientationuevurrumiimmriieriieiiierieenienneens 2-14
ACHVE CONTOUIS ...ttt e e e e e e e e e e e e e e eeeeeeeeeeeeens 2-15
OPLICAl FIOW ... 2-18
Lucas & Kanade Techniqueccccooeeiiiiiiee e, 2-19

Horn & Schunck Technique..........cccooeiiii e, 2-19
BIOCK MatCRING ...cccviieiiiieiiieieee e 2-20

R 1 [P L] £ PP PP PRPPPRPPPRP 2-20
MOAEIS...cciiiiiiiiiiee e 2-20
EStMALOrS ...ooeiiiiiiiii e, 2-21
Kalman Filtering ..., 2-22
ConDensation AlgOrithm 2-23

Chapter 3
Image Analysis

CONLOUN RETIEVING ...ceiiiiiiiiieiie ettt 3-1
BasiC DefinitiONS.......cooiiiiiiiiiie e 3-1
Contour Representationccoveeiieiii e 3-3
Contour Retrieving Algorithmccccoiiiiiiiiiiieeeeeee 3-4
FRATUINES. ... e e e 3-5
FIXE FIItEIS .ooeviiiiieieeeee e 3-5
SODEI DEIVALIVES ...ttt 3-6
Optimal Filter Kernels with Floating Point Coefficients 3-9
FIrSt DEINVALIVES.coieiiiieiiieiie e 3-9
SecoNd DEeriVatiVESuuuieiiiiiiiiiiiiiiiiiiiie e e 3-10

OpenCV Reference Manual Contents

Laplacian ApproXimationccoouururerieeennniiiieeeee e 3-10
Feature DEteCHiONuvvviiiiiiiiiieiieee e 3-10
Corner DeteCHiON........cce i 3-11
Canny Edge DeteCtor.........covviiii ittt 3-11
Hough TranSfOrmeeeieiiiiiiiiiiieie e 3-14
IMAGE STALISTICS ...ttt 3-15
PYramIidsS. ... e 3-15
MOFPRNOIOGY ... 3-19
Flat Structuring Elements for Gray Scale...........cccccccciiiiiie 3-21
DiStance TranSTOrM.........ueeiiiiiieiiiiiieeeeee e 3-23
TRresholding ... 3-24
(oo To I 1111 PP PP PPRPPPRPPPRP 3-25
[15 oTo] £= 1 4 PP PP PPRPPPRPPPRP 3-25
Histograms and Signatures.........cccccvveviieiiiiieieeeee 3-26
Example Ground DIStanCesc.coovveiiiiiiiiiiiiieeeeeeee 3-29
Lower Boundary for EMD ... 3-30
Chapter 4
Structural Analysis
CONEOUN PrOCESSING ...ttt 4-1
Polygonal ApProXimationcccouviiiiiieiieeeiiiiiiiee e 4-1
Douglas-Peucker ApproxXimation...........cccccvevveeiiiiiiiiiieiiieieeeie e 4-4
CoNtoUrs MOMENLSccooiiiiiiiii e e 4-5
Hierarchical Representation of CONtoUrS..........ccccvvvieiiieiiene 4-8
LT =To] 0 0 TC 1P 4-14
ENPSE FIttiNg ...oceveiiieiiieiiieeee e 4-14
LiNE FItNGg coveeeieeiieeiieeee ettt 4-15
Convexity DefeCtScoo i 4-16
Chapter 5
Object Recognition
Eigen ODJECES ... 5-1
Embedded Hidden Markov Modelscccviiiiiiiiiiiic e 5-2

intel. 3

OpenCV Reference Manual Contents

Chapter 6
3D Reconstruction
Camera Calibration.............coiiiiiiiiiee e 6-1
Camera ParameterS..........ooovvruiiiiiiiecieieie et 6-1
HOMOGIaPNY ...ceiviiiieiieeeeeee e 6-2
PAEIN...coeeiiee e 6-3
LenS DiStOMIONcevviiiiiiiiiiiiee e 6-4
Rotation Matrix and Rotation VECOr ..o 6-5
VIEW MOIPNING ...ciiiiiiiiiiiiii e 6-5
AIGOIIENM e, 6-6
Using Functions for View Morphing Algorithmccccccn. 6-8
P O S T e e 6-9
Geometric Image FOrmation ... 6-10
Pose Approximation Method ..., 6-11
AlGOTItNM e 6-13
Gesture RECOGNITION.......ciiiiiiieeiieeie e 6-15
Chapter 7
Basic Structures and Operations
IMAJE FUNCHIONS ...t 7-1
DynamicC Data SrUCTUIES...........ueieieeaiiiiiiiiiie et 7-4
MEMOTIY STOTAGE ...ceveririiriiiee et 7-4
SEUUENCESceiiiieiiee ettt ettt e e et e e e r e 7-5
Writing and Reading SEQUENCEScoovviiiiiieiiiiiiiieeeee e 7-6
Y] £ TP 7-8
GrAPNS e 7-11
MaALFiX OPEIALIONSevveeiiiiiiietieeiiee ettt er e e e eeeeeeeaeeeees 7-15
Drawing PrimitiVESuueiiiiiiiiiiiiiiiiitiie e eenees 7-15
UBIIEY et 7-16
Chapter 8 Library Technical Organization and System Functions
Error HandliNgooeeiiieei e 8-1
Memory ManagemeENTcocoeuuiiiriiiii e 8-1

intel. s

OpenCV Reference Manual Contents

Interaction With Low-Level Optimized FUNCHONS...........ccccovvviiiiiiiecennns 8-1
UsSer DLL Creationcooe ettt 8-1
Chapter 9
Motion Analysis and Object Tracking Reference
Background Subtraction FUNCLIONS..........c.uviiiiiiiiiiiiiiie e 9-3
o o TSP 9-3
Yo (U E= T =Y Y o TP 9-4
IMUIIDIYACC ..ttt 9-4
RUNNINGAVT .ottt 9-5
Motion Templates FUNCHIONSc.uiviiiiiiiiiieiiieeieeee e 9-6
UpPdateMOtIONHISIONYveviieiiiiiieiiieeiiee et 9-6
CalcMOotioNGradieNntcooeeiieeiee e 9-6
CalcGlobalOrientation............ccociiii e 9-7
SegMENTMOLION......ooi i 9-8
CamShift FUNCHIONSoooii e 9-9
CaMSHRITE ... e 9-9
MEANSNITE. ... e e 9-10
Active Contours FUNCHIONcc.vviiiiiiiiiiiiiiiiiieee e 9-11
SNAKEIMAGE ... 9-11
Optical FIOW FUNCLIONSoooiiiiiieiieee e 9-12
CalcOpticalFIOWHS ... 9-12
CalcOpticalFIOWLK. 9-13
CalcOpticalFIOWBM....... ..o 9-13
CalcOpticalFIOWPRYILK ...t 9-14
EStIMAators FUNCHONSc.uiiiiiiiiiiiiieiieetee e 9-16
CreateKalman ... 9-16
ReleaseKalman ... 9-16
KalmanUpdateByTimecccuviiiiiiiiiiiiiiieeee e 9-17
KalmanUpdateByMeasurement.............uuevvueiieeiieeiieiieeiieenieeieeeieeene. 9-17
CreateConDeNnSatioNccccccuuuuieiiiiiiiiitiiiiiie e 9-17
ReleaseConDeENSAtONccuiviiiiiiiiiiie e 9-18

OpenCV Reference Manual Contents

ConDensINitSamMPIESEetc.ooiiiiiiiiii e 9-18
ConDensUpdatebyTime.........cccoooviiiiiiiiiiiiiiie e 9-19
EStIMAtors Data TYPES.....ccuveiiiiiiiiiiiiiieeiieee ettt 9-19
Chapter 10
Image Analysis Reference

.. 10-1
Contour Retrieving FUNCHONSoooooiiie e 10-6
FINACONTOUIS ... e 10-6
StartFINACONTOUIS. ... oo 10-7
FINANEXICONTOUNcoitiiiiiiiei et e 10-8
SUDSHIULECONTOUN ...ttt e e 10-9

=Y gTo] il 0o (@] o] (01U &= U TTORUPPTPR 10-9
Features FUNCLIONS ... e 10-10
Fixed Filters FUNCHIONS......iiiiiiiiiecicii e 10-10
LAPIACE ...ttt 10-10
SODEL e 10-10
Feature Detection FUNCHIONS.........ccovviiiiiiiiiiiiiiiieiiee e 10-11
CANNY ... 10-11
PreCornerDetecCT.........cooiiiii i e 10-12
CornerEigenValsSANAVECS.........ccoociiiiiiiiiiie e 10-12
CornerMIinEigenVal ... 10-13
FINACOMMErSUDPIX ..ccvviiiiiiiiii i 10-14
GoodFeatureSTOTrack........ccoooiii e 10-16
Hough Transform FUNCLIONS............ccvvviiiiiiiiiiie 10-17
HOUGNLINES.....iiiiiiiieiiieeeeee ettt 10-17
HOUQGNLINESSDIVviiiiiiiiiiiiiiit ettt 10-18

[STt U 1= (o] o TR 10-18
HOUGNLINESP ...ttt 10-19
DISCUSSION ...ttt e e e e e eeeeeeeaean s 10-19
Image StatisStics FUNCLIONS..........ccuiiiiiiiiiiiiiiiieiiieeee e 10-20
COUNEINONZEIO ..t 10-20
SUMPIXEIS ..ot e 10-20

OpenCV Reference Manual Contents

1 =T o PO PPTOTR RPN 10-21
MeEAN_STADEV ... 10-21
Y] Y = b d o T o U TSR 10-22
[N (0] o 0 I PO PPTOTR PPN 10-22
MOIMEBINTS ... e et e e e e e e e ee e 10-24
GetSpatialMOmMENt ... 10-25
GetCentralMOMENT........ooiiiiii e e 10-25
GetNormalizedCentralMOmMeNtcccccuumimmrimiiiiiiiieieeeeee 10-26
GEtHUMOMENTS ...t ae e 10-27
Pyramid FUNCLIONSttt 10-28
PYIDOWN .ot 10-28
PYTU D e 10-28
PYrSegmMEeNtationueuueeiiiiiiieiiiiiieeieee e 10-29
MOrphology FUNCHIONScvviiiiiiiiieieeiieeeieeie et 10-30
CreateStructuringElementEXccccoiiiiiiiiiiiiee 10-30
ReleaseStructuringElement.............ooiiici 10-31
ErOAE .o e 10-31
D1 LS 10-32
MOFPROIOGYEX ...cceeiiiiiiiiiiiiiiiiiee et 10-33
Distance Transform FUNCHON..........iiiiiiiiii e 10-34
DISTTraNSTOrM ... e 10-34
Threshold FUNCHONSiii e e 10-36
AdaptiveThreshold ... 10-36
B I 10221 1] (o ST 10-38
Flood Filling FUNCHONeviiiiiiiiiiiieiiieeieeeeeeeeee e 10-40
FIOOARI ... 10-40
Histogram FUNCHONS...........uueiiiiiiiiiiiiiiiiiie e 10-41
CreatEHIST....eiei e 10-41
REIEASEHISE ... 10-42
MakeHiStHeaderFOrAITaAY ... 10-42
QUETNYHISIVAIUE_ID ..ciiiiiiiiiiei e 10-43
QUETNYHISIVAIUE_2D ...coeeeiiiiiiie e e ee e 10-43

OpenCV Reference Manual Contents

QueryHistValue_3D ... 10-44
QUETrYHISTVAIUE_ND ..o e 10-44
GetHISTValUE 1Dccoeiiiiiiii e 10-45
GetHISIVAlUE _2D ... e 10-45
GetHISTValUE_3D ... e 10-46
GetHISTValUE_ND ... e 10-46
GetMINMaxXHISIVAIUEovuiiiieieee e 10-47
NOIMANZEHIST ... 10-47
TRIESHHIST et e 10-48
CoMPArEHIST ..o 10-48
COPYHIST ..o 10-49
SetHISIBINRANGES.... .ot 10-50
CaAICHIST .. e 10-50
CalCBaCKPIOJECT. ... 10-51
CalcBackProjectPatCh...........ooovoiiiiii 10-52
CalCEMD... .. 10-54
CalcCoNntrastHIST.......ooo i 10-55
Pyramid Data TYPESuuuuuuriiiriiiiiiiiiiiiiieiiesiieeiieeie e es e e e e e e eereeeeeeeeeees 10-56
Histogram Data TYPESuueiiuiiiiiiiiiiiieiieiieeeie et 10-57
Chapter 11
Structural Analysis Reference
.. 111
Contour Processing FUNCHIONSoooveeiieoiiee e 11-3
APPFOXCRAINS ..eeiiiiiiiiiiiiiiee e 11-3
StartReadChainPointscoiiiiiii e 11-4
ReadChainPoOiNt.............iiiiii e 11-5
APPFOXPOIY ...t 11-5
DIaWCONTOUIS ...t ettt et e e et e e e e et e e e e ee e e e eeees 11-6
ContourBoundiNgRECTcccouiiiiiiiiiiiiiiiie e 11-7
CONLOUISMOMENTS ...ttt e 11-8
CONTOUIATEA ...ttt ettt e e e e e e e ee e e eee 11-8
MALCHCONTOUIS ...oevuiiiiiiie e e e e e eeeanees 11-9

OpenCV Reference Manual Contents

CreateCoNtOUITIEEcoiieiiii e e 11-10
ContoUrFroMCONTOUITIEEuviieeeeieeeiei e e 11-11
MatCNCONIOUITIEES. ...veeieeiiieeieeiieeit ettt 11-12
Geometry FUNCHIONSooviieiiieie e 11-12
FILEHNPSE oo 11-12
FIELINE2D .ottt 11-13
FIELINE3D ittt 11-15
PrOJECEID .ottt 11-16
ConVexHUIL........oo 11-17
ContourConvexXHUIl ... 11-18
COoNVEXHUIAPPIOX ...ttt 11-18
ContourConveXHUIIAPPIOX..........ueeniiiiiiiiiiriirir e 11-20
CheckContoUrCONVEXILYccoeevieiiieiieeee e 11-21
CoNVEXItYDEFECES ... 11-21
MINATEARECTuuiiiiiiiitiie ittt e ee e 11-22
CAICPGH ... 11-23
MINENCIOSINGCIICIEoevviiiiiiiieeiieeeeeee e 11-24
Contour Processing Data TYPeSccovveiiimiiiiiiiiiiiieeeeeee 11-24
Geometry Data TYPES......ouuviuiiiieiecieeei e e 11-25
Chapter 12
Object Recognition Reference
.. 12-1
Eigen Objects FUNCHIONS.ccuviiiiiiiiiiiieeeeeeeeeee e 12-3
CalcCovarMatrixXEXccoovviiieiiiiie e 12-3
CalCEIgeNODJECTSttt 12-4
CalcDecomMPCOETT..... . 12-5
EIgENDECOMPOSITE...ccviiiiiiiiiiiiiii ettt 12-6
[S{oT=] 0] ol fo][=Tex 1 o] o IR PP PPPRPPPRPPPRP 12-7
Use of Eigen Object FUNCLIONSuuuiiiiiiiiiiiiiieiiieiiieiieeeeee e 12-7
Embedded Hidden Markov Models FUnctions...........ccccccvvvvivieiieennnen. 12-12
CreateZDHMM ... 12-12
RElEASE2DHMMociiiiiiiiiiiiitiiieeteete ettt 12-13

OpenCV Reference Manual Contents

CreateODbSINTO ... 12-13
ReleaseObSINTO ... 12-14
IMGTOODS_DCT .ottt 12-14
UNiformImMgSegmo 12-15
L L1 D ST =T [E PP PPPPRPPPPPPP 12-16
EstimateHMMStateParams..........ccoveeeieeiiiieeieeeeeeeeeeee e 12-17
EstimateTranSProb.........ccooiiiii e 12-17
EStimateObSPrObD ... 12-18
Y1 (=T o | 12-18
MIXSEOMLZ ...ttt 12-19
HMM SHrUCTUIES. ettt e e e e e e e 12-19
Chapter 13
3D Reconstruction Reference
Camera Calibration FUNCLONSccoiiiiiiiiiiicc e, 13-4
CalibrateCamera.........ccoooviiiiiie e 13-4
CalibrateCamera_64d........c.uuuuiiiiiiiiiiieei e 13-5
FindExtrinsicCameraParamscccooveeeiieiiiiieieee e 13-6
FindExtrinsicCameraParams_64dc.coiiiiiiiiiiiiiiiiiii e 13-7
ROGIQUES ...ttt n e re e e e e e 13-7
ROAINQUES_B4duuveiiiiiiiiiiiiiiiiiii e re e e 13-8
UNDISTOITONCE c.viiiit e e e e aeas 13-9
(01 D115 (o] o 4 a1 SRR 13-9
(01] D11 (o] o SRR 13-10
FiNdChessBoardCorNerGUESSES.........vveeivviiieieeiieeeeeeeeeeaei e 13-11
View Morphing FUNCHIONSccuviiiieiiiiiiiiiieeeieeieeee et 13-12
FindFundamentalMatriXceeiiiiiiiiiieieeeeee e 13-12
MaKESCANINES......cvve i 13-13
PreWarplimage.......coouviriiiceeeeee e 13-13
FINARUNS ..o 13-14
DynamicCorrespondMUltioooevviiiiiiiiii 13-15
MakeAlIphaScanlines ... 13-16
MOrphEPIINESMUILoovvviiiiiiiiiiiiiii 13-16

OpenCV Reference Manual Contents

POStWATIPIMAGEcoovviiiiiiie e 13-17
DEIELEMOIIE ..ottt 13-18
POSIT FUNCHONS ...ttt et e e e e e e e eeeeeeeees 13-19
CreatePOSITODJECE ... 13-19
POSIT o 13-19
ReleasePOSITODJECE.ccvviiiiiiiiiiiieeie e 13-20
Gesture Recognition FUNCLIONSccoociiiiiiiiee e 13-21
FINAHANAREGION ..ccoiiiiiiiiiiiiiiieie e 13-21
FINAHANAREGIONAoooiiiiiiiiiiii e 13-22
CreateHandMasK ... 13-23
CalcimageHomographyccocooiiiiiii e 13-23
CalCProbDENSItY ..o 13-24
MAXRECT. ... 13-25
Chapter 14
Basic Structures and Operations Reference
Image Functions REfEIENCEcooviiiiiiiiiiiie e 14-7
CreatelmageHEader it 14-7
CreatelMAagE ... e e 14-8
ReleaselmageHeader ... 14-9
RElEASEIMAQGE.....ciiiiiiiiiiiiieeete e 14-9
CreatelmageDatalcoovvrviiiiieeeieee e 14-10
ReleaselmMageDatacccuvvviiiiiiiiiiiiiiiiiiiiieee e 14-10
SetlMageDatal........ccoiiiiiiieie e 14-11
SetIMAGECON ... e 14-11
SetIMAGERONviieiii e 14-12
GetlmageRaWDALAccvvuiiiiieriiieee e e 14-12
INItIMAgEHEAEN ..o 14-13
COPYIMAGE. .. e e 14-14
PiXel ACCESS MACIOS.euiiiiiiiitiiti bbb 14-14
CV_INIT_PIXEL_POS ...t 14-16
CV_MOVE_TO .. it 14-16
CV_MOVE ... 14-17

OpenCV Reference Manual Contents

CV_MOVE_WRAP ... 14-17
CV_MOVE_PARAM ..ot 14-18
CV_MOVE_PARAM_WRAP ...ttt 14-18
Dynamic Data Structures Referenceccccccccvvvviiiiiiiiiiiiieie, 14-20
Memory Storage ReferencCe.........ccccccvveiiiiiiic 14-20
CreateMemMSIOTAgEe.civeeeriii et eeeeees 14-21
CreateChildMemStOrageccoovuueumrniiiiiiiie e 14-21
ReleaseMemMSIOrageccvvvviieiiiiiiiiiiieiie e 14-22
ClearMemSIOrage.co i e 14-22
SaAVEMEMSIOragEPOScovvviiiiiee e 14-23
RestoreMemStoragePoS........c.uvviiiiiieiicieiei e 14-23
Sequence Reference ... 14-25
01 £ TN IS =T o PSPPI 14-28
SetSeqBIOCKSIZE ... 14-29
SeOPUSH 14-29
SEOPOP . 14-30
SeqPUSHFIONT ... 14-30
SeQPOPFIONL ... 14-31
SeqPUSAMUII........co 14-31
SeqPOPMUNI....co e 14-32
SEOINSEIT ... 14-32
SEUREMOVE ...t 14-33
ClEAISEQ ... 14-33
GetSeqEIem ... 14-34
SeqEIEMIAX ..o 14-34
CVESEOTOAITAY ...t ee ettt ettt e e e e e eeeenes 14-35
MakeSeqHeaderFOrAITAY ..., 14-35
Writing and Reading Sequences Reference.............ccoeee e 14-36
StartAPPENATOSEQ. ..o e 14-36
StArWIHEESEQ ..o 14-37
ENAWIIEES Q... ettt e e e ee e e e 14-38
FIUSNSEOQWIIEET ...ttt 14-38

OpenCV Reference Manual Contents

StArtREAUSE[. eeeeie it 14-39
GetSeqReaderPOS 14-40
SetSeqReaderPOScco i 14-40
SetsS REferencCeooooiiiii 14-41
SetS FUNCHONSuiiii e 14-41
CrEAtESEL....c it 14-41
SEtAD ... 14-41
SEIREMOVE ... e 14-42
GetSetElIem ... 14-42
ClEAISEL ... 14-43
Sets Data SIUCLUMEScoovvieriiiie e 14-44
Graphs REferenCe.......coccoii e 14-45
CreateGraph ... 14-45
GrapnAdAVEX .o 14-45
GraphREMOVEVEX ..ot 14-46
GraphRemoVveVIXBYPIr ..., 14-46
GraphAddEdgEcooeeieeee e 14-47
GraphAddEdgEBYPII ... 14-48
GraphRemMOVEEAQEeoceiiiiiiiiiiiii e 14-49
GraphRemoveEdgeBYPIrcccooiiiii e 14-49
FINAGraphEdge.........uuuiiiiiiiiiiiiiiiiieiiieiieeeeee e 14-50
FINdGraphEdgeBYPII.........oovviiiiiiiiiiiiii e 14-51
GraphViXDEOIEEot 14-51
GraphVixDegreeByPIrccoocoiiii e 14-52
ClearGraph ... 14-53
GetGraphViX ..o 14-53
GrapVEXIAX ..o 14-53
GraphEAgeIOX.....coi oo 14-54
Graphs Data StrUCIUIeSccuuieiiiiiiiiiiiiie e 14-54
Matrix Operations ReferencCe.........ccccvvveeiiiiiiiiiiiiiiiieee 14-56
ANOC . 14-56
ANOCAITAY ..ttt 14-57

intgl. 13

OpenCV Reference Manual Contents

P B 14-57
FIEEAITAY ..veieieee et e 14-57
AT o 14-58
SUD 14-58
S LAl 14-59
(D01 (o To [F T ox S PP PPPPRPPPPPPP 14-59
CrOSSPIrOQUCT ... 14-60
IMUL L 14-60
MUITIANSPOSEM....cciiiiiiiiiiiiiiieit et 14-61
TIANSPOSE ..ottt 14-61
LAY] o TR 14-62
= (o PR 14-62
D= P PO PP P PPPUUPPPUPPPRPPP 14-62
L0})T STTUPUTPTPRTRT 14-63
SEUZEIO .o e 14-63
Setldentitycoeiee e 14-64
Mahalonobisuuiiiiiiiiii 14-64
SV D 14-65
BIGENVV L e e 14-65
PerspectiVEPIOJECTccviiiiiiiiiiiieeeeeete e 14-66
Drawing Primitives REferencecccccuvvvmiiniiiiiiiiiiiiiiieiiieiieieeiee 14-67
LN e 14-67
LINEAA s 14-67
RECIANGIE.....ceiiiiiiiiieiiei e 14-68
CIlClE e 14-69
EHIPSE .o 14-69
EHIPSEAA .o 14-71
FilIPOIY . 14-71
FillCONVEXPOIY.....cciviiiiiiiiiiiiiiitee ettt 14-72
POIYLINE L.ttt 14-73
POIVLINEAA .ot 14-73
NIEFONT .. 14-74

OpenCV Reference Manual Contents

PULTEXE . et e e e e e e 14-75
GITEXISIZE .t e e e eeeeens 14-75
Utility RETEIENCE 14-76
ADSDITT .. 14-76
ADSDITS ... 14-77
MatChTemMPlate........oveiiiiii 14-77
CVIPIXTOPIANE. ... e 14-80
CVEPIANETOPIX. 1ttt e e e e eees 14-80
CONVEISCAIE ..o e eeeees 14-81
INIELINEITEIALON ... e e 14-82
SAMPIELINE .. 14-83
GetRECISUDPIX ... 14-84
DFASTAICIAN.....coiieii e e 14-84
Yo | S PP SRUPRPPPRPTI 14-85
DSt e 14-85
LNV | o TP 14-86
DINVS It 14-86
DRECIPIOCAL.uiiiiiiiiiiiii e 14-87
DCAITOPOIATueeeie e 14-87
DFASTEXP ...ttt 14-88
DFASTLOQG ...ttt 14-88
RaANAINIT ... e e 14-89
DRANG ... e 14-89
FillIMAGE .. 14-90
RaANASEIRANGE .. .uviiiiiiiiiiiiiiii e 14-90
KIMBANS ... e e et e e e 14-91
Chapter 15
System Functions
[T= Vo | = 10 11117 PSPPI 15-1
GetLibrarylINfOccooi e 15-2

u
intgl. 15

OpenCV Reference Manual

Contents

Bibliography

Appendix A
Supported Image Attributes and Operation Modes

Glossary

Index

Overview 1

About

This manual describes the structure, operation, and functions of the Open Source
Computer Vision Library (OpenCV) for Intel® architecture. The OpenCV Library is
mainly aimed at real time computer vision. Some example areas would be
Human-Computer Interaction (HCI); Object Identification, Segmentation, and
Recognition; Face Recognition; Gesture Recognition; Motion Tracking, Ego Motion,
and Motion Understanding; Structure From Motion (SFM); and Mobile Robotics.

The OpenCV Library software package supports many functions whose performance
can be significantly enhanced on the Intel® architecture (IA), particularly...

The OpenCV Library is acollection of low-overhead, high-performance operations
performed on images.

This manual explainsthe OpenCV Library concepts as well as specific data type
definitions and operation models used in the image processing domain. The manual
also provides detailed descriptions of the functionsincluded in the OpenCV Library
software.

This chapter introduces the OpenCV Library software and explains the organization of
this manual.

This Software

The OpenCV implements awide variety of tools for image interpretation. It is
compatible with Intel® Image Processing Library (IPL) that implements low-level
operations on digital images. In spite of primitives such as binarization, filtering,
image statistics, pyramids, OpenCV is mostly a high-level library implementing
algorithmsfor calibration techniques (Camera Calibration), feature detection (Feature)
and tracking (Optical Flow), shape analysis (Geometry, Contour Processing), motion

11

OpenCV Reference Manual Overview 1

analysis (Motion Templates, Estimators), 3D reconstruction (View Morphing), object
segmentation and recognition (Histogram, Embedded Hidden Markov Models, Eigen
Objects).

The essential feature of the library along with functionality and quality is performance.
The algorithms are based on highly flexible data structures (Dynamic Data Structures)
coupled with IPL data structures; more than a half of the functions have been

assembl er-optimized taking advantage of Intel® Architecture (Pentium® MMX™,
Pentium® Pro, Pentium® 111, Pentium® 4).

Why We Need OpenCV Library

The OpenCV Library isaway of establishing an open source vision community that
will make better use of up-to-date opportunities to apply computer vision in the
growing PC environment. The software provides a set of image processing functions,
aswell asimage and pattern analysis functions. The functions are optimized for Intel®
architecture processors, and are particularly effective at taking advantage of MM X™
technology.

The OpenCV Library has platform-independent interface and supplied with whole C
sources. OpenCV is open.

Relation Between OpenCV and Other Libraries

OpenCV isdesigned to be used together with Intel® Image Processing Library (IPL)
and extends the latter functionality toward image and pattern analysis. Therefore,
OpenCV shares the same image format (1 p! | rage) with IPL.

Also, OpenCV uses Intel® Integrated Performance Primitives (IPP) on lower-level, if
it can locate the | PP binaries on startup.

IPP provides cross-platform interface to highly-optimized low-level functions that
perform domain-specific operations, particularly, image processing and computer
vision primitive operations. |PP exists on multiple platformsincluding 1A32, IA64,
and StrongARM. OpenCV can automatically benefit from using PP on all these
platforms.

1-2

OpenCV Reference Manual Overview 1

Data Types Supported

There are afew fundamental types OpenCV operates on, and several helper data types
that are introduced to make OpenCV API more simple and uniform.

The fundamental data types include array-like types: | pl | mage (IPL image), CvMat
(matrix), growable collections: cvSeq (deque), CvSet , CvG aph and mixed types.
CvHi st ogr am(multi-dimensional histogram). See Basic Structures and Operations
chapter for more details.

Helper data typesinclude: cvPoi nt (2d point), cvSi ze (width and height),
CvTernCri teria (termination criteriafor iterative processes), | pl ConvKer nel
(convolution kernel), cvMonent s (spatial moments), etc.

Error Handling

Error handling mechanism in OpenCV issimilar to IPL.

There are no return error codes. Instead, there isa global error status that can be set or
retrieved viacvEr ror and cvGet Err St at us functions, respectively. The error
handling mechanism is adjustable, e.g., it can be specified, whether cvEr r or printsout
error message and terminates the program execution afterwards, or just sets an error
code and the execution continues.

See Library Technical Organization and System Functions chapter for list of possible
error codes and details of error handling mechanism.

Hardware and Software Requirements

The OpenCV software runson personal computersthat are based on Intel® architecture
processors and running Microsoft* Windows* 95, Windows 98, Windows 2000, or
Windows NT*. The OpenCV integratesinto the customer’s application or library
writtenin C or C++.

1-3

OpenCV Reference Manual Overview 1

Platforms Supported

The OpenCV software run on Windows platforms. The code and syntax used for
function and variable declarations in this manual are written in the ANSI C style.
However, versions of the OpenCV for different processors or operating systems may,
of necessity, vary dightly.

About This Manual

This manual provides a background for the computer image processing concepts used
in the OpenCV software. The manual includestwo major parts, one isthe Programmer
Guide and the other is Reference. The fundamental concepts of each of the library
components are extensively covered in the Programmer Guide. The Reference
provides the user with specifications of each OpenCV function. The functions are
combined into groups by their functionality (chapters 10 through 16). Each group of
functionsis described along with appropriate data types and macros, when applicable.
The manual includes example codes of the library usage.

Manual Organization

This manual includes two principal parts: Programmer Guide and Reference.
The Programmer Guide contains

Overview (Chapter 1) that provides information on the OpenCV software, application
area, overal functionality, the library relation to IPL, data types and
error handling, along with manual organization and notational
conventions.

and the following functionality chapters:
Chapter 2 Motion Analysis and Object Tracking comprising sections:

* Background Subtraction. Describes basic functions that enable
building statistical model of background for its further
subtraction.

OpenCV Reference Manual

Overview 1

Chapter 3

Motion Templates. Describes motion templates functions
designed to generate motion template images that can be used to
rapidly determine where a motion occurred, how it occurred, and
in which direction it occurred.

Cam Shift. Describes the functions implemented for realization
of “Continuously Adaptive Mean-SHIFT” agorithm (CamShift)
algorithm.

Active Contours. Describes afunction for working with active
contours (snakes).

Optical Flow. Describes functions used for cal culation of optical
flow implementing Lucas & Kanade, Horn & Schunck, and
Block Matching techniques.

Estimators. Describes a group of functions for estimating
stochastic models state.

Image Analysis comprising sections:

Contour Retrieving. Describes contour retrieving functions.

Features. Describes various fixed filters, primarily derivative
operators (1st & 2nd Image Derivatives); feature detection
functions; Hough Transform method of extracting geometric
primitives from raster images.

Image Statistics. Describes a set of functions that compute
different information about images, considering their pixels as
independent observations of a stochastic variable.

Pyramids. Describes functions that support generation and
reconstruction of Gaussian and Laplacian Pyramids.

Morphology. Describes an expanded set of morphological
operators that can be used for noisefiltering, merging or splitting
image regions, as well asfor region boundary detection.

Distance Transform. Describes the distance transform functions
used for calculating the distance to an object.

1-5

Overview 1

OpenCV Reference Manual
* Thresholding. Describes threshold functions used mainly for
masking out some pixels that do not belong to a certain range,
for example, to extract blobs of certain brightness or color from
theimage, and for converting grayscale image to bi-level or
black-and-white image.
* Flood Filling. Describes the function that performs flood filling
of aconnected domain.
* Histogram. Describes functions that operate on
multi-dimensional histograms.
Chapter 4 Structural Analysis comprising sections:
* Contour Processing. Describes contour processing functions.
* Geometry. Describes functions from computational geometry
field: line and ellipse fitting, convex hull, contour analysis.
Chapter 5 Image Recognition comprising sections:
* Eigen Objects. Describes functions that operate on eigen objects.
* Embedded HMM. Describes functions for using Embedded
Hidden Markov Models (HM M) in face recognition task.
Chapter 6 3D Reconstruction comprising sections:
® Camera Calibration. Describes undistortion functions and
camera calibration functions used for calculating intrinsic and
extrinsic camera parameters.
* View Morphing. Describes functions for morphing views from
two cameras.
* POSIT. Describes functions that together perform POSIT
algorithm used to determine the six degree-of-freedom pose of a
known tracked 3D rigid object.
* Gesture Recognition. Describes specific functions for the static
gesture recognition technol ogy.
Chapter 7 Basic Structures and Operations comprising sections:

1-6

OpenCV Reference Manual

Overview 1

Chapter 8

Image Functions. Describes basi ¢ functions for manipulating
raster images: creation, allocation, destruction of images. Fast
pixel access macros are also described.

Dynamic Data Structures. Describes severa resizable data
structures and basic functions that are designed to operate on
these structures.

Matrix Operations. Describes functions for matrix operations:
basic matrix arithmetics, eigen problem solution, SVD, 3D
geometry and recognition-specific functions.

Drawing Primitives. Describes simple drawing functions
intended mainly to mark out recognized or tracked featuresin

Utility. Describes unclassified OpenCV functions.

Library Technical Organization and System Fuctions comprising
sections:

Error Handling.

Memory Management.

Interaction With Low-L evel Optimized Functions.
User DLL Creation.

Reference contains the following chapters describing respective functions, datatypes
and applicable macros:

Motion Analysis and Object Tracking Reference.
Image Analysis Reference.

Structural Analysis Reference.

Image Recognition Reference.

3D Reconstruction Reference.

Basic Structures and Operations Reference.
System Functions Reference.

Chapter 9

Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15

The manual aso includes Appendix A that describes supported image attributes and
operation modes, a Glossary of terms, aBibliography, and an | ndex.

1-7

OpenCV Reference Manual Overview 1

Function Descriptions

In Chapters 10 through 16, each function is introduced by name and a brief description
of its purpose. Thisis followed by the function call sequence, definitions of its
arguments, and more detailed explanation of the function purpose. The following
sections are included in function description:

Arguments Describes all the function arguments.

Discussion Defines the function and describes the operation performed
by the function. This section also includes descriptive
equations.

Audience for This Manual

The manual is intended for all users of OpenCV: researchers, commercial software
developers, government and camera vendors.

On-line Version

Thismanual isavailable in an electronic format (Portable Document Format, or PDF).
To obtain a hard copy of the manual, print the file using the printing capability of
Adobe* Acrobat*, the tool used for the on-line presentation of the document.

Related Publications

For more information about signal processing concepts and algorithms, refer to the
books and materialslisted in the Bibliography.

Notational Conventions

In this manual, notational conventions include:

* Fonts used for distinction between the text and the code
* Naming conventions

* Function name conventions

intgl. 16

OpenCV Reference Manual Overview 1

Font Conventions

The following font conventions are used:

THI'S TYPE STYLE Used in the text for OpenCV constant identifiers; for
example, CV_SEQ KI ND_GRAPH.
This type style Mixed with the uppercase in structure names asin

CvCont our Tr ee; also used in function names, code
examples and call statements; for example, i nt
cvFi ndCont ours() .

This type style Variables in arguments discussion; for example, val ue, src.

Naming Conventions

The OpenCV software uses the following naming conventions for different items:
* Constant identifiers are in uppercase; for example, CV_SEQ KI ND_GRAPH.

* All names of the functions used for image processing have thecv prefix. In code
examples, you can distinguish the OpenCV interface functions from the
application functions by this prefix.

* All OpenCV external functions’ names start with cv prefix, all structures names
start with cv prefix.

g NOTE. Inthismanual, thecv prefixin function namesis always

e used in the code examples. In the text, this prefix is usually omitted
when referring to the function group. Prefix cvmis respectively
omitted in Matrix Operations Functions.

Each new part of afunction name starts with an uppercase character, without
underscore; for example, cvCont our Tr ee.

OpenCV Reference Manual

Overview 1

Function Name Conventions

The function namesin the OpenCV library typically begin withcv prefix and have the

following general format:

CV <action> <target> <nmod> ()

where

action

t ar get

nod

indicates the core functionality, for example, - Set -,
-Create-, -Convert-.

indicates the area where the image processing is being
enacted,forexample,- Fi nd Cont our s Or- Appr oxPol y.

In anumber of cases the target consists of two or more
words, for example, - Mat chCont our Tr ee. Some function
names consist of an acti on ort arget only; for example,
the functions cvUunDi st ort Or cvAcc respectively.

an optional field; indicates a modification to the core
functionality of a function. For example, in the function
name cvFi ndExt ri nsi cCaner aPar ans_64d, _64d
indicates that this particular function constant 64d values.

1-10

OpenCV Reference Manual Overview 1

u
intgl. 111

Motion Analysis and Object
Tracking

2

Background Subtraction

This section describes basic functions that enable building statistical model of
background for its further subtraction.

In this chapter the term "background” stands for a set of motionless image pixels, that
is, pixels that do not belong to any object, moving in front of the camera. This
definition can vary if considered in other techniques of object extraction. For example,
if adepth map of the scene is obtai ned, background can be determined as parts of scene
that are located far enough from the camera.

The simplest background model assumes that every background pixel brightness
varies independently, according to normal distribution.The background characteristics
can be calculated by accumulating several dozens of frames, as well as their squares.
That means finding asum of pixel vauesinthelocations, , and asum of squares of
the values sq(, yy for every pixel location.

: S .
Then mean is calculated as m, ,, = =52, where Nis the number of the frames
collected, and

i ati - SAx.y) _(Seey))?
standard deviationas 6, ,, = sqrt (T—(T)) .

After that the pixel in a certain pixel location in certain frame is regarded as belonging
to amoving object if condition abs(m, ,,-p.y))>Co« ,, ISMEL, where Cisacertan
constant. If Cisequal to 3, it is the well-known "three sigmas’ rule. To obtain that
background model, any objects should be put away from the camerafor afew seconds,
so that a whole image from the camera represents subsequent background observation.

The above technique can be improved. First, it is reasonable to provide adaptation of
background differencing model to changes of lighting conditions and background
scenes, e.g., when the camera moves or some object is passing behind the front object.

2-1

OpenCV Reference Manual Motion Analysis and Object Tracking 2

The simple accumulation in order to cal culate mean brightness can be replaced with
running average. Also, several technigques can be used to identify moving parts of the
scene and exclude them in the course of background information accumulation. The
techniques include change detection, e.g., viacvAbsDi ff with cvThr eshol d, optical
flow and, probably, others.

The functions from the section (See Motion Analysis and Object Tracking Reference)
are ssimply the basic functions for background information accumulation and they can
not make up a complete background differencing module alone.

Motion Templates

Motion

The functions described in Motion Templates Functions section are designed to
generate motion template images that can be used to rapidly determine where a motion
occurred, how it occurred, and in which direction it occurred. The a gorithms are based
on papers by Davis and Bobick [Davis97] and Bradski and Davis [Bradsky00Q]. These
functions operate on images that are the output of background subtraction or other
image segmentation operations; thus the input and output image types are all
grayscale, that is, have a single color channel.

Representation and Normal Optical Flow Method

Motion Representation

Figure 2-1 (left) shows capturing a foreground silhouette of the moving object or
person. Obtaining a clear silhouette is achieved through application of some of
background subtraction techniques briefly described in the section on Background
Subtraction. Asthe person or object moves, copying the most recent foreground
silhouette as the highest values in the motion history image creates a layered history of
the resulting motion; typically this highest value is just afloating point timestamp of
time elapsing since the application was launched in milliseconds. Figure 2-1 (right)

2-2

OpenCV Reference Manual Motion Analysis and Object Tracking 2

shows the result that is called the Motion History Image (MHI). A pixel level or atime
deltathreshold, as appropriate, is set such that pixel values in the MHI image that fall
below that threshold are set to zero.

Figure 2-1 Motion History Image From Moving Silhouette

L D

The most recent motion has the highest value, earlier motions have decreasing values
subject to a threshold below which the value is set to zero. Different stages of creating
and processing motion templates are described below.

A) Updating MHI Images

Generally, floating point images are used because system time differences, that is, time
elapsing since the application was launched, are read in milliseconds to be further
converted into afloating point number which is the value of the most recent silhouette.
Then follows writing this current silhouette over the past silhouettes with subsequent
thresholding away pixels that are too old (beyond a maximum mhi Dur at i on) to create
the MHI.

B) Making Motion Gradient Image
1. Start with the MHI image as shown in Figure 2-2(left).
2. Apply 3x3 Sobel operators X and Y to the image.

2-3

OpenCV Reference Manual Motion Analysis and Object Tracking 2

3. If theresulting response at a pixel location (X,Y) is S, (x,y) to the Sobel
operator Xand s, (x,y) tothe operator Y, then the orientation of the gradient is
calculated as:

A(x,y) = arctanS,((X,y)/S,(X,¥)),
and the magnitude of the gradient is:
Mx.y) = JSixy) +S2(x.y).

4. The equations are applied to the image yielding direction or angle of aflow

image superimposed over the MHI image as shown in Figure 2-2.

Figure 2-2 Direction of Flow Image

NEs

OpenCV Reference Manual Motion Analysis and Object Tracking 2

5. The boundary pixels of the MH region may give incorrect motion angles and
magnitudes, as Figure 2-2 shows. Thresholding away magnitudes that are

either too large or too small can be aremedy in this case. Figure 2-3 showsthe
ultimate results.

Figure 2-3 Resulting Normal Motion Directions

OpenCV Reference Manual Motion Analysis and Object Tracking 2

C) Finding Regional Orientation or Normal Optical Flow

Figure 2-4 shows the output of the motion gradient function described in the section
above together with the marked direction of motion flow.

Figure 2-4 MHI Image of Kneeling Person

The current silhouette isin bright blue with past motions in dimmer and dimmer blue.
Red lines show where valid normal flow gradients were found. The white line shows

computed direction of global motion weighted towards the most recent direction of
motion.

To determine the most recent, salient global motion:

OpenCV Reference Manual Motion Analysis and Object Tracking 2

1. Calculate ahistogram of the motions resulting from processing (see
Figure 2-3).

2. Find the average orientation of a circular function: angle in degrees.
a. Find the maximal peak in the orientation histogram.

b. Find the average of minimum differences from this base angle. The more
recent movements are taken with lager weights.

Motion Segmentation

Representing an image as a single moving object often gives a very rough motion
picture. So, the goa isto group MHI pixelsinto several groups, or connected regions,
that correspond to parts of the scene that move in different directions. Using then a
downward stepping floodfill to label motion regions connected to the current
silhouette helps identify areas of motion directly attached to parts of the object of
interest.

Once MHI image is constructed, the most recent silhouette acquires the maximal
values equal to the most recent timestamp in that image. The image is scanned until
any of these values is found, then the silhouette’s contour is traced to find attached
areas of motion, and searching for the maximal values continues. The agorithm for
creating masks to segment motion region is as follows:

1. Scanthe MHI until apixel of the most recent silhouette is found, use floodfill
to mark the region the pixel belongs to (see Figure 2-5 (@)).

2. Walk around the boundary of the current silhouette region looking outside for
unmarked motion history steps that are recent enough, that is, within the
threshold. When a suitable step is found, mark it with adownward floodfill. If
the size of the fill isnot big enough, zero out the area (see Figure 2-5 (b)).

3. [Optional]:

— Record locations of minimums within each downfill (see Figure 2-5 (c));

— Perform separate floodfills up from each detected location (see Figure 2-5
(d);

— Uselogical AND to combine each upfill with downfill it belonged to.

4. Store the detected segmented motion regions into the mask.

5. Continue the boundary “walk” until the silhouette has been circumnavigated.

2-7

OpenCV Reference Manual Motion Analysis and Object Tracking 2

6. [Optional] Go to 1 until all current silhouette regions are found.

Figure 2-5 Creating Masks to Segment Motion Region

] i
z #
;
E -
- dr
AR e, I
W dom ""‘a BTy gean
Wik
el Iy
™ ET T
| ¥ LR,
r g s
j 2
b
s |
EFE
o S
¥l Tip
B e
FLELLRT 1Y
Placlisg

intgl. 28

OpenCV Reference Manual Motion Analysis and Object Tracking 2

CamShift

This section describes CamShift algorithm realization functions.

CamShift stands for the “ Continuously Adaptive Mean-SHIFT” algorithm. Figure 2-6
summarizes this algorithm. For each video frame, the raw image is converted to acolor
probability distribution image via a color histogram model of the color being tracked,
e.g., flesh color in the case of face tracking. The center and size of the color object are
found via the CamShift algorithm operating on the color probability image. The
current size and location of the tracked object are reported and used to set the size and
location of the search window in the next video image. The processis then repeated for
continuous tracking. The algorithm is a generalization of the Mean Shift algorithm,

highlighted in gray in Figure 2-6.

2-9

OpenCV Reference Manual Motion Analysis and Object Tracking 2

Figure 2-

6 Block Diagram of CamShift Algorithm

........
o 0
o

{ searchwindow : @
*.size and location,.”

»

v .
""""

Color histogram look-
L —p up in calculation
region

Set calculation
region at search
window center
but larger in +

size than the L
search window Color probability distribution

f im?ge

Use (X,Y) to set *
searchwindow [| Find center of mass
> center, 2* area’? P ithin the search <
to set size. window

v

Center search window
at the center of mass
and find area under it

CamShift operates on a 2D color probability distribution image produced from
histogram back-projection (see the section on Histogram in Image Analysis). The core
part of the CamShift algorithm is the Mean Shift algorithm.

The Mean Shift part of the algorithm (gray areain Figure 2-6) isasfollows:
1. Choose the search window size.

2. Choosetheinitia location of the search window.

intel.

2-10

OpenCV Reference Manual Motion Analysis and Object Tracking 2

3. Compute the mean location in the search window.
4. Center the search window at the mean location computed in Step 3.

5. Repeat Steps 3 and 4 until the search window center converges, i.e., until it has
moved for a distance less than the preset threshold.

Mass Center Calculation for 2D Probability Distribution

For discrete 2D image probability distributions, the mean location (the centroid) within
the search window, that is computed at step 3 above, is found as follows:

Find the zeroth moment

Mo =D > 1(Y).
Xy

Find the first moment for x and y

Mo = S S X y) 5 My = 33 yH(x.y).
y

X Xy

M ean search window location (the centroid) then is found as
Mo, - My
© T Mot Ve T My
wherel (x, y) isthe pixel (probability) value in the position (x, y) intheimage, and x
and y range over the search window.

Unlike the Mean Shift algorithm, which is designed for static distributions, CamShift
isdesigned for dynamically changing distributions. These occur when objectsin video
sequences are being tracked and the object moves so that the size and location of the
probability distribution changes in time. The CamShift algorithm adjusts the search
window sizein the course of its operation. Initial window size can be set at any
reasonable value. For discrete distributions (digital data), the minimum window length
or width isthree. Instead of a set, or externally adapted window size, CamShift relies
on the zeroth moment information, extracted as part of the internal workings of the
algorithm, to continuously adapt its window size within or over each video frame.

X

2-11

OpenCV Reference Manual Motion Analysis and Object Tracking 2

CamsShift Algorithm
1. Set the calculation region of the probability distribution to the whole image.
2. Choosetheinitial location of the 2D mean shift search window.

3. Calculate the color probability distribution in the 2D region centered at the
search window location in an ROI slightly larger than the mean shift window
size.

4. Run Mean Shift algorithm to find the search window center. Store the zeroth
moment (area or size) and center location.

5. For the next video frame, center the search window at the mean location stored
in Step 4 and set the window size to a function of the zerot" moment found
there. Go to Step 3.

Figure 2-7 shows CamShift finding the face center on a 1D slice through aface and
hand flesh hue distribution. Figure 2-8 shows the next frame when the face and hand
flesh hue distribution has moved, and convergence is reached in two iterations.

2-12

OpenCV Reference Manual

Motion Analysis and Object Tracking 2

Figure 2-7 Cross Section of Flesh Hue Distribution

Step 1

Step 4

Step 2

Step 5

Step 3

Rectangular CamShift window is shown behind the hue distribution, while triangle in
front marks the window center. CamShift is shown iterating to convergence down the

left then right columns.

2-13

OpenCV Reference Manual Motion Analysis and Object Tracking 2

Figure 2-8 Flesh Hue Distribution (Next Frame)

Step 1 Step 2

Starting from the converged search location in Figure 2-7 bottom right, CamShift
converges on new center of distribution in two iterations.
Calculation of 2D Orientation

The 2D orientation of the probability distribution is aso easy to obtain by using the
second moments in the course of CamShift operation, where the point (x, y) ranges
over the search window, and | (x, y) isthe pixel (probability) value at the point (x, y) .

Second moments are

My, = ZZXZI (X, Y)) My = ZZXZI (X,y).
Xy Xy

Then the object orientation, or direction of the major axis, is

2(%_)%3’(:)
B e S
G-
- 2

Thefirst two eigenvalues, that is, length and width, of the probability distribution of
the blob found by CamShift may be calculated in closed form as follows:

2-14

OpenCV Reference Manual Motion Analysis and Object Tracking 2

, b= 2(—-———xcyc),and c = —N—bg—yi.

Then length I and width w from the distribution centroid are

| = J(a+c)+A/b2+(a—c)2

2 ’

W= J(a +c)—«/b2+ (a—c)2

> .
When used in face tracking, the above equations give head roll, length, and width as
marked in the source video image in Figure 2-9.

Figure 2-9 Orientation of Flesh Probability Distribution

Active Contours

This section describes afunction for working with active contours, also called snakes.

The snake was presented in [Kass88] as an energy-minimizing parametric closed curve
guided by external forces. Energy function associated with the snake is
E=E,+E

ext ?
where E; ,, istheinternal energy formed by the snake configuration, E,,, isthe
external energy formed by external forces affecting the snake. The aim of the snakeis

to find alocation that minimizes energy.

2-15

OpenCV Reference Manual Motion Analysis and Object Tracking 2

Let p,,...,p, beadiscrete representation of a snake, that is, a sequence of pointson an
image plane.

In OpenCV theinternal energy function is the sum of the contour continuity energy
and the contour curvature energy, as follows:

E. where

|nt:E +E

curv?
isthe contour continuity energy. This energy is
Econt = |[d—|Pi —p;i _4|| » Where d isthe average distance between all
pairs (p; —p; _;) - Minimizing E,,,, over al the snake points
Py, ... P, » CAUSES the snake points become more equidistant.

Ecurv isthe contour curvature energy. The smoother the contour is, the less
isthe curvature energy.. ., = [P _1—2p; +p; .4

cont

E

cont

In [Kass88] external energy was represented as E,,, = E; y, * E;o, ,» Where
E; ., — iMage energy and E_,,, - energy of additional constraints.

Two variants of image energy are proposed:
1. E ., =-1,wherel istheimageintensity. In this case the snake is attracted to

the bright lines of the image.
2. Ei.ng = -lgrad()l. Thesnakeisattracted to the image edges.

A variant of external constraint is described in [Kass88]. Imagine the snake points
connected by springs with certain image points. Then the spring forcek(x - xg)

2
produces the energy '% . Thisforce pulls the snake points to fixed positions, which
can be useful when

snake points need to be fixed. OpenCV does not support this option now.
Summary energy at every point can be written as
Ei =04 Econt,i +Bi Ecurv,i +Yi Ei mg,i (21)

where o, B, y are the weights of every kind of energy. The full snake energy isthe sum
of E; over al the points.

The meanings of «, B,y are asfollows:

o isresponsible for contour continuity, that is, abig o makes snake points more
evenly spaced.

2-16

OpenCV Reference Manual Motion Analysis and Object Tracking 2

B isresponsible for snake corners, that is, abig p for a certain point makes the angle
between snake edges more obtuse.

y isresponsible for making the snake point more sensitive to the image energy, rather
than to continuity or curvature.

Only relative values of o, B, y in the snake point are relevant.

The following way of working with snakes is proposed:

* create asnake with initial configuration;

* defineweights o, 8, y at every point;

¢ alow the snake to minimize its energy;

* evauate the snake position. If required, adjust o, 8, v, and, possibly, image data,
and repeat the previous step.

There are three well-known algorithms for minimizing snake energy. In [Kass38] the
minimization is based on variational calculus. In [Yuille89] dynamic programmingis
used. The greedy algorithm is proposed in [Williams92].

The latter agorithm is the most efficient and yields quite good results. The scheme of
this algorithm for each snake point is as follows:

1. UseEgquation (3.1) to compute E for every location from point neighborhood.
Before computing E, each energy term E_ ;. E¢, - Ei oy Must be normalized
using formula €, i i zeq = (Ei g =M n)/(max —min), where max and ni n are
maximal and minimal energy in scanned neighborhood.

2. Choose location with minimum energy.
3. Move snakes point to thislocation.
4. Repeat al the steps until convergence is reached.
Criteria of convergence are as follows:
* maximum number of iterationsis achieved,
* number of points, moved at last iteration, isless than given threshold.
In [Williams92] the authors proposed a way, called high-level feedback, to adjust b

coefficient for corner estimation during minimization process. Although thisfeatureis
not available in the implementation, the user may build it, if needed.

2-17

OpenCV Reference Manual Motion Analysis and Object Tracking 2

Optical Flow

This section describes several functions for calculating optical flow between two
images.

Most papers devoted to motion estimation use the term optical flow. Optical flow is
defined as an apparent motion of image brightness. Let 1 (x, y, t) betheimage
brightness that changes in time to provide an image sequence. Two main assumptions
can be made:

1. Brightnessi (x, y, t) smoothly depends on coordinates x, y in greater part of
the image.
2. Brightness of every point of amoving or static object does not change in time.
L et some object in theimage, or some point of an object, move and after time dt the

object displacement is(dx, dy) . Using Taylor seriesfor brightnessi (x,y, t) gives
the following:

I (x+dx,y +dy,t +dt) = | (x,y,1t)+g—:(dx +g—;dy +g—idt +..., (2.2)
where“...” are higher order terms.

Then, according to Assumption 2:

I (x+dx,y +dy,t +dt) = | (x,y,t), (2.3)
and

al al al _

550X +5Wdy tapdt +.. =0, (2.9
Dividing (18.3) by dt and defining

d d

X=u, P=v (2.5)
gives an equation

ol _al ol

_a_t - a—xu +£WV y (2'6)

usually called optical flow constraint equation, where u and v are components of
optical flow fieldin x and y coordinates respectively. Since Equation (2.6) has more
than one solution, more constraints are required.

Some variants of further steps may be chosen. Below follows a brief overview of the
options available.

2-18

OpenCV Reference Manual Motion Analysis and Object Tracking 2

Lucas & Kanade Technique

Using the optical flow equation for a group of adjacent pixels and assuming that all of
them have the same vel ocity, the optical flow computation task is reduced to solving a
linear system.

In anon-singular system for two pixels there exists a single solution of the system.
However, combining equations for more than two pixelsis more effective. In this case
the approximate solution is found using the least square method. The equations are
usually weighted. Here the following 2x2 linear system is used:

VO YT U+ ST Y ey = =S Wyl 1,
y y y

X,y X,y X,y

WYL U+ T YDV = =STW)1

X,y X,y X,y

where W x, y) isthe Gaussian window. The Gaussian window may be represented as a
composition of two separable kernels with binomial coefficients. Iterating through the
system can yield even better results. It meansthat the retrieved offset is used to
determine a new window in the second image from which the window in the first
image is subtracted, while ; iscalculated.

Horn & Schunck Technique

Horn and Schunck propose a technique that assumes the smoothness of the estimated
optical flow field [Horn81]. This constraint can be formulated as

o= [+ Q0+ (2" (2 ooy @7

This optl cal flow solution can deviate from the optical flow constraint. To express this
deviation the following integral can be used:

C= ”(Il u+—|v +?)_D2dxdy. (2.8)
Thevalue S+AC, Where L isaparameter, called Lagrangian multiplier, is to be
minimized. Typically, asmaller » must be taken for a noisy image and a larger one for
aquite accurate image.

To minimize s+xcC, asystem of two second-order differential equationsfor the whole
image must be solved:

2-19

Motion Analysis and Object Tracking 2

OpenCV Reference Manual
2 2
a_u+a_u = }\(a_lu +a_IV +a_|)a_|,
aXZ ayz ox ay Jt /ox (2 9)
2 2)
v dv _ ., (ol dl alyal
w2y SRS s)

Iterative method could be applied for the purpose when a number of iterations are
made for each pixel. Thistechnique for two consecutive images seems to be
computationally expensive because of iterations, but for along sequence of images
only an iteration for two images must be done, if the result of the previous iteration is
chosen asinitial approximation.

Block Matching

This technique does not use an optical flow equation directly. Consider an image
divided into small blocks that can overlap. Then for every block in the first image the
algorithm triesto find a block of the same size in the second image that is most similar
to the block in the first image. The function searches in the neighborhood of some
given point in the second image. So all the pointsin the block are assumed to move by
the same offset that is found, just like in Lucas & Kanade method. Different metrics
can be used to measure similarity or difference between blocks - cross correlation,
squared difference, etc.

Estimators

This section describes group of functions for estimating stochastic models stete.

State estimation programs implement amodel and an estimator. A model is anal ogous
to a data structure representing relevant information about the visual scene. An
estimator is analogous to the software engine that manipulates this data structure to
compute beliefs about the world. The OpenCV routines provide two estimators:
standard Kalman and condensation.

Models

Many computer vision applicationsinvolve repeated estimating, that is, tracking, of
the system quantities that change over time. These dynamic quantities are called the
system state. The system in question can be anything that happens to be of interest to a
particular vision task.

2-20

OpenCV Reference Manual Motion Analysis and Object Tracking 2

To estimate the state of a system, reasonably accurate knowledge of the system model
and parameters may be assumed. Parameters are the quantities that describe the model
configuration but change at a rate much slower than the state. Parameters are often
assumed known and static.

In OpenCV a state is represented with a vector. In addition to this output of the state
estimation routines, another vector introduced is a vector of measurements that are
input to the routines from the sensor data.

To represent the model, two things are to be specified:
* Estimated dynamics of the state change from one moment of time to the next
* Method of obtaining a measurement vector z, from the state.

Estimators

M ost estimators have the same general form with repeated propagation and update
phases that modify the state's uncertainty asillustrated in Figure 2-10.

Figure 2-10 Ongoing Discrete Kalman Filter Cycle

~ -.""'H.

Time U|;lﬂ:|l|.' Measurement Update
{"Pradict') ['ﬂ‘nrr?r'r'l

The time update projects the current state estimate ahead in time. The measurement
update adj usts the projected estimate using an actual measurement at that time.

2-21

OpenCV Reference Manual Motion Analysis and Object Tracking 2

An estimator should be preferably unbiased when the probability density of estimate
errors has an expected value of 0. There exists an optimal propagation and update
formulation that is the best, linear, unbiased estimator (BLUE) for any given model of
theform. Thisformulation is known as the discrete Kalman estimator, whose standard
form isimplemented in OpenCV.

Kalman Filtering

The Kalman filter addresses the general problem of trying to estimate the state x of a
discrete-time process that is governed by the linear stochastic difference equation

Xis1 = AXy + W (2.10)
with ameasurement z, that is
z, = Hx, +v, (2.11)

The random variables w, and v, respectively represent the process and measurement
noise. They are assumed to be independent of each other, white, and with normal
probability distributions

N0, Q , (2.12)
p(w) = N(O,R). (2.13)

TheN x Nmatrix A in the difference equation (2.10) relates the state at time step k
to the state at step k+1, in the absence of process noise. Them x Nmatrix H in the
measurement equation (2.11) relates the state to the measurement z,,.

p(w)

If X, denotesapriori state estimate at step k provided the process prior to stepk is
known, and X, denotes a posteriori state estimate at step k provided measurement z, is

known, then a priori and a posteriori estimate errors can be defined
e, =X, —X
as *© xR . The apriori estimate error covariance isthen P, = Efe e,'1 and the a
€k T Xk =%
posteriori estimate error covariance is P, = Efee, 1.
The Kalman filter estimates the process by using aform of feedback control: the filter
estimates the process state at some time and then obtains feedback in the form of noisy
measurements. As such, the eguations for the Kalman filter fall into two groups: time

update equations and measurement update equations. The time update equations are
responsible for projecting forward in time the current state and error covariance

2-22

OpenCV Reference Manual Motion Analysis and Object Tracking 2

estimates to obtain the a priori estimates for the next time step. The measurement
update equations are responsible for the feedback, that is, for incorporating a new
measurement into the a priori estimate to obtain an improved a posteriori estimate. The
time update equations can a so be viewed as predictor equations, while the
measurement update equations can be thought of as corrector equations. Indeed, the
final estimation algorithm resembles that of a predictor-corrector algorithm for solving
numerical problems as shown in Figure 2-10. The specific equations for the time and
measurement updates are presented below.

Time Update Equations
Xe i1 = AXcs

.
Pes1 = APACH Q-

Measurement Update Equations:

_ T T -1
K = PeH (HPH + R

X
=
1

X + K (z —H Xp) s

i)
=~
|

= (I —KeHOP,

where K is the so-called Kalman gain matrix and | is the identity operator. See
CvKal man in Motion Analysis and Object Tracking Reference.

ConDensation Algorithm

This section describes the ConDensation (conditional density propagation) algorithm,
based on factored sampling. The main idea of the agorithm is using the set of
randomly generated samples for probability density approximation. For simplicity,
genera principles of ConDensation algorithm are described below for linear stochastic
dynamical system:

Xis1 = AXy + W (2.14)
with a measurement z.

To start the agorithm, a set of samples x» must be generated. The samples are
randomly generated vectors of states. The function ConDensl ni t Sanpl eSet doesit in
OpenCV implementation.

2-23

OpenCV Reference Manual Motion Analysis and Object Tracking 2

During the first phase of the condensation a gorithm every samplein the set is updated
according to Equation (3.14).

Further, when the vector of measurement z is obtained, the algorithm estimates
conditional probability densities of every sample p(x"|z) . The OpenCV
implementation of the ConDensation algorithm enables the user to define various
probability density functions. There is no such special function in the library. After the
probabilities are calcul ated, the user may eval uate, for example, moments of tracked
process at the current time step.

If dynamics or measurement of the stochastic system is non-linear, the user may
update the dynamics (A) or measurement (H) matrices, using their Taylor series at each
time step. See CvConDensat i on in Motion Analysis and Object Tracking Reference.

2-24

lmage Analysis

Contour Retrieving

This section describes contour retrieving functions.

Below follow descriptions of:

* severad basic functionsthat retrieve contours from the binary image and store them
in the chain format;

¢ functions for polygonal approximation of the chains.

Basic Definitions

Most of the existing vectoring algorithms, that is, algorithms that find contours on the
raster images, deal with binary images. A binary image contains only 0-pixels, that is,
pixelswith the value O, and 1-pixels, that is, pixels with the value 1. The set of
connected 0- or 1-pixels makes the 0-(1-) component. There are two common sorts of
connectivity, the 4-connectivity and 8-connectivity. Two pixels with coordinates (x’,
y’) and (x”, y”) are called 4-connected if, and only if, |x’—x” +|y’—y”l = 1 and
8-connected if, and only if, max (Ix’—=x",ly’=y”) = 1. Figure 3-1 showstheserelations.:

Figure 3-1 Pixels Connectivity Patterns

|:| Pixels, 8-connected to the black one

|:| Pixels, 4- and 8-connected to the black one

3-1

OpenCV Reference Manual Image Analysis 3

Using this relationship, the image is broken into several non-overlapped 1-(0-)
4-connected (8-connected) components. Each set consists of pixelswith equal values,
that is, al pixelsare either equal to 1 or 0, and any pair of pixels from the set can be
linked by a sequence of 4- or 8-connected pixels. In other words, a 4-(8-) path exists
between any two points of the set. The components shown in Figure 3-2 may have
interrelations.

Figure 3-2 Hierarchical Connected Components

/7

1-components W1, W2, and W3 are inside the frame (0O-component B1), that is,
directly surrounded by B1.

0-components B2 and B3 are inside WL.

1-components W5 and W6 are inside B4, that is inside W3, so these 1-components
are inside W3 indirectly. However, neither W5 nor W6 enclose one another, which
means they are on the same level.

In order to avoid atopological contradiction, O-pixels must be regarded as 8-(4-)
connected pixelsin case 1-pixels are dealt with as 4-(8-) connected. Throughout this
document 8-connectivity is assumed to be used with 1-pixels and 4-connectivity with
O-pixels.

3-2

OpenCV Reference Manual Image Analysis 3

Since 0-components are complementary to 1-components, and separate 1-components
are either nested to each other or their internals do not intersect, the library considers
1-components only and only their topological structure is studied, O-pixels making up
the background. A 0-component directly surrounded by a 1-component is called the
hole of the 1-component. The border point of a 1-component could be any pixel that
belongs to the component and has a 4-connected O-pixel. A connected set of border
pointsis called the border.

Each 1-component has a single outer border that separates it from the surrounding
0-component and zero or more hole borders that separate the 1-component from the
0-components it surrounds. It is obvious that the outer border and hole borders give a
full description of the component. Therefore all the borders, also referred to as
contours, of all components stored with information about the hierarchy make up a
compressed representation of the source binary image. See Reference for description
of the functions Fi ndCont ours, StartFindContours, and Fi ndNext Cont our
that build such a contour representation of binary images.

Contour Representation

The library uses two methods to represent contours. The first method is called the
Freeman method or the chain code. For any pixel all its neighbors with numbersfrom 0
to 7 can be enumerated:

Figure 3-3 Contour Representation in Freeman Method

3|1 2]|1
4 0
S[6]7

The 0-neighbor denotes the pixel on the right side, etc. As a sequence of 8-connected
points, the border can be stored as the coordinates of the initial point, followed by
codes (from 0 to 7) that specify the location of the next point relative to the current one

(see Figure 3-4).

3-3

OpenCV Reference Manual Image Analysis 3

Figure 3-4 Freeman Coding of Connected Components

Initial Point

Chain Code for the Curve: 34445670007654443

The chain code is a compact representation of digital curves and an output format of
the contour retrieving algorithms described below.

Polygonal representation is a different option in which the curve is coded as a
sequence of points, vertices of a polyline. This aternative is often a better choice for
manipulating and analyzing contours over the chain codes; however, this
representation is rather hard to get directly without much redundancy. Instead,
algorithms that approximate the chain codes with polylines could be used.

Contour Retrieving Algorithm

Four variations of algorithms described in [Suzuki85] are used in thelibrary to retrieve
borders.

1. Thefirst algorithm finds only the extreme outer contours in the image and
returns them linked to the list. Figure 3-2 shows these external boundaries of
W1, W2, and W3 domains.

2. Thesecond algorithm returns all contours linked to the list. Figure 3-2 shows
the total of 8 such contours.

3. Thethird algorithm finds all connected components by building a two-level
hierarchical structure: on the top are the external boundaries of 1-domains and
every external boundary containsalink to the list of holes of the
corresponding component. The third algorithm returns all the connected
components as atwo-level hierarchical structure: on the top are the external
boundaries of 1-domains and every external boundary contour header contains

3-4

OpenCV Reference Manual Image Analysis 3

alink to thelist of holesin the corresponding component. The list can be
accessed viav_next field of the external contour header. Figure 3-2 shows
that W2, W5, and W6 domains have no holes; consequently, their boundary
contour headers refer to empty lists of hole contours. W1 domain has two holes
- the external boundary contour of W1 refersto alist of two hole contours.
Finally, W3 external boundary contour refersto alist of the single hole
contour.

The fourth algorithm returns the complete hierarchical tree where all the
contours contain alist of contours surrounded by the contour directly, that is,
the hole contour of W3 domain has two children: external boundary contours
of W5 and W6 domains.

All agorithms make a single pass through the image; there are, however, rare
instances when some contours need to be scanned more than once. The algorithms do
line-by-line scanning.

Whenever an algorithm finds a point that belongs to a new border the border following
procedure is applied to retrieve and store the border in the chain format. During the
border following procedure the algorithms mark the visited pixelswith special positive
or negative values. If the right neighbor of the considered border point is a0-pixel and,
at the same time, the O-pixel is located in the right hand part of the border, the border
point is marked with a negative value. Otherwise, the point is marked with the same
magnitude but of positivevalue, if the point has not been visited yet. This can be easily
determined since the border can crossitself or tangent other borders. The first and
second algorithms mark all the contours with the same value and the third and fourth
algorithms try to use a unique ID for each contour, which can be used to detect the
parent of any newly met border.

Features

Fixed Filters

This section describes various fixed filters, primarily derivative operators.

3-5

OpenCV Reference Manual Image Analysis 3

Sobel Derivatives

Figure 3-5 shows first x derivative Sobel operator. The grayed bottom |eft number
indicates the origin in a“p- q” coordinate system. The operator can be expressed as a
polynomial and decomposed into convolution primitives.

Figure 3-5 First x Derivative Sobel Operator

qg 1 |2 |0 |-=2 1 1
— * % |1 1 % |1 -1
0|1]0 |- 1 1
0 pl 2 (1+9) (1+q) (1+p) (1-p)

For example, first x derivative Sobel operator may be expressed as a polynomial
1+2q+q°-p*~2pq-p°a” = (1+q)*(1-p?) = (L+q)(1+q)(1+p)(1-p) and
decomposed into convolution primitives as shown in Figure 3-5.

This may be used to express a hierarchy of first x and y derivative Sobel operators as
follows:

2 = a+p)"a+aa-p) (3.1)
2 = a+p)"a+e) a-o) (32)
forn>o0.

Figure 3-6 showsthe Sobel first derivative filters of equations(3.1) and (3.2) forn = 2,
4. The Sobel filter may be decomposed into simple “add-subtract” convolution
primitives.

3-6

OpenCV Reference Manual Image Analysis 3

Figure 3-6 First Derivative Sobel Operators for n=2 and n=4

Filter Differentiate Average
n=2 dx

1 0 - 1

= * 11 -
2 0 - 1
1 0 -

1
% 111

0 0 0 -

=1 1 |*
1 2 1 1

Second derivative Sobel operators can be expressed in polynomia decomposition

similar to equations (3.1) and (3.2). The second derivative equations are:
2

L= @+p)" A1+) (1-p)?, (33)
X

92 n-1 n-2 2

== L+p)" (L) (-, (3.4)
ay

Gl 1+p)" ta+" ta-p 35
gy = AP @A) T A-p(A-g) (3.5)
forn = 2,3,....

OpenCV Reference Manual Image Analysis 3

Figure 3-7 shows the filters that result for n = 2 and 4. Just as shown in Figure 3-6,
these filters can be decomposed into simple “ add-subtract” separable convolution
operators as indicated by their polynomial form in the equations.

Figure 3-7 Sobel Operator Second Order Derivators forn=2and n =4

The polynomial decomposition is shown above each operator.

&ex2 = (1+q)X(1-p)? 31dy? = (1+p)X(1-9)° oxdy = (1+a)(1+p)(1-g)(1-p)
1|21 112 |1 110 |1
2 |4 |2 2|4 -2 0 |0 |O
1|21 112 |1 1|10 |-
&16x2 = (1+p)A(1+g)*(1-p) &Idy? = (1+q)X1+p)X(1-0)?

1 |/0 |20 |1 114 |6 |4 |1

4 0 410 4 0 0 0 0 0

6 |0 |-12/0 |6 2|8 |-12|-8]-2

4 0 810 4 0 0 0 0 0

1 |/0 |20 |1 114 |6 |4 |1

Fxdy = (L+p)(1+a)*(1-p)(1-g)

1|-2]0]2 |1
2|-4l0 |4 |2
o |o |0 |0 |oO
2 |4 |0 |4]-2
1|2 o |2]1

OpenCV Reference Manual Image Analysis 3

Third derivative Sobel operators can aso be expressed in the polynomial

decomposition form:
3

Ef—ﬁm|o>”“°‘<1+q)”(1—|c>>‘°‘, (3.6)
X
83 n n-3 3
s indCL AL VRl (3.7)
y

3 2 n-2 n-1
—3o = (=P ey) -, (3.8)
x“dy

3 n-1 n-2 2
= 1)) Tra)" T (d-a) (3.9
xdy

forn =3, 4,.... Thethird derivative filter needs to be applied only for the casesn = 4
and general.

Optimal Filter Kernels with Floating Point Coefficients

Table 3-1

First Derivatives

Table 3-1 gives coefficients for five increasingly accurate x derivativefilters, they
filter derivative coefficients are just column vector versions of the x derivative filters.

Coefficients for Accurate First Derivative Filters

Anchor DX Mask Coefficients

0 0.74038 -0.12019

0 0.833812 -0.229945 0.0420264

0 0.88464 -0.298974 0.0949175 -0.0178608

0 0.914685 -0.346228 0.138704 -0.0453905 0.0086445

0 0.934465 -0.378736 0.173894 -0.0727275 0.0239629 -0.00459622

Five increasingly accurate separable x derivative filter coefficients. The table gives half
coefficients only. The full table can be obtained by mirroring across the central anchor
coefficient. The greater the number of coefficients used, the less distortion from the
ideal derivative filter.

OpenCV Reference Manual Image Analysis 3

Table 3-2

Second Derivatives

Table 3-2 gives coefficients for five increasingly accurate x second derivative filters.
They second derivative filter coefficients are just column vector versions of the x
second derivativefilters.

Coefficients for Accurate Second Derivative Filters

Anchor DX Mask Coefficients
-2.20914 1.10457

-2.71081 1.48229 -0.126882

-2.92373 1.65895 -0.224751 0.0276655

-3.03578 1.75838 -0.291985 0.0597665 -0.00827

-3.10308 1.81996 -0.338852 0.088077 -0.0206659 0.00301915

The table gives half coefficients only. The full table can be obtained by mirroring
across the central anchor coefficient. The greater the number of coefficients
used, the less distortion from the ideal derivative filter.

Laplacian Approximation

The Laplacian operator is defined as the sum of the second derivativesx andy:
3’ 9

L = —— =, 3.10
ax? E)y2 ()

Thus, any of the equations defined in the sections for second derivatives may be used
to calculate the Laplacian for an image.

Feature Detection

A set of Sobel derivativefilters may be used to find edges, ridges, and blobs, especially
in a scale-space, or image pyramid, situation. Below follows a description of methods
in which the filter set could be applied.

* D isthefirst derivativein the direction x just as .
* D isthesecond derivativein the direction x just asD,,.
* D, isthepartial derivative with respect tox andy.
® D iSthethird derivative in the direction x just as By .

3-10

OpenCV Reference Manual Image Analysis 3

Corner

* Dy, and Dy, arethethird partialsin the directions x, y.

Detection

Method 1

Corners may be defined as areas where level curves multiplied by the gradient
magnitude raised to the power of 3 assume alocal maximum

2 2
D, Dy, + D, Dy —2D,D, D, - (3.11)
Method 2

Sobel first derivative operators are used to take the derivativesx andy of an image,
after which asmall region of interest is defined to detect cornersin. A 2x2 matrix of
the sums of the derivatives x andy is subsequently created as follows:

D> S°D,D
c=| 25 2XBB (3.12)
D5, Y0

The eigenvalues are found by solving det (C-Al) = 0, where A is acolumn vector of
the eigenvalues and | isthe identity matrix. For the 2x2 matrix of the equation above,
the solutions may be written in a closed form:

ZDf +ZD§ + J(Zoi +ZD§)2—4(ZD§ZD§ —(ZDXDy)Z)
_ . . (3.13)

If &, 2,>t , wheret issome threshold, then a corner isfound at that location. This can
be very useful for object or shape recognition.

A

Canny Edge Detector

Edges are the boundaries separating regions with different brightness or color. J.Canny
suggested in [Canny86] an efficient method for detecting edges. It takes grayscale
image on input and returns bi-level image where non-zero pixels mark detected edges.
Below the 4-stage algorithm is described.

3-11

OpenCV Reference Manual Image Analysis 3

Stage 1. Image Smoothing

The image data is smoothed by a Gaussian function of width specified by the user
parameter.

Stage 2. Differentiation

The smoothed image, retrieved at Stage 1, is differentiated with respect to the
directionsx andy.

From the computed gradient values x and y, the magnitude and the angle of the
gradient can be calculated using the hypotenuse and arctangen functions.

In the OpenCV library smoothing and differentiation are joined in Sobel operator.

Stage 3. Non-Maximum Suppression

After the gradient has been calculated at each point of the image, the edges can be
located at the points of local maximum gradient magnitude. It is done via suppression
of non-maximums, that is points, whose gradient magnitudes are not local maximums.
However, in this case the non-maximums perpendicul ar to the edge direction, rather
than those in the edge direction, have to be suppressed, since the edge strength is
expected to continue along an extended contour.

The algorithm starts off by reducing the angle of gradient to one of the four sectors
shown in Figure 3-8. The al gorithm passes the 3x 3 neighborhood across the magnitude
array. At each point the center element of the neighborhood is compared with its two
neighbors aong line of the gradient given by the sector value.

If the central value is non-maximum, that is, not greater than the neighbors, it is
suppressed.

3-12

OpenCV Reference Manual Image Analysis 3

Figure 3-8 Gradient Sectors

e
S8

Stage 4. Edge Thresholding

The Canny operator uses the so-called “hysteresis’ thresholding. Most thresholders
use a single threshold limit, which means that if the edge values fluctuate above and
below this value, the line appears broken. This phenomenon is commonly referred to
as “streaking”. Hysteresis counters streaking by setting an upper and lower edge value
l[imit. Considering aline segment, if avalue lies above the upper threshold limit it is
immediately accepted. If the value lies below the low threshold it isimmediately
rejected. Points which lie between the two limits are accepted if they are connected to
pixels which exhibit strong response. The likelihood of streaking is reduced drastically
since the line segment points must fluctuate above the upper limit and below the lower
limit for streaking to occur. J. Canny recommends in [Canny86] the ratio of high to
low limit to be in the range of two or three to one, based on predicted signal -to-noise
ratios.

3-13

OpenCV Reference Manual Image Analysis 3

Hough Transform

The Hough Transform (HT) is a popular method of extracting geometric primitives
from raster images. The smplest version of the algorithm just detects lines, but it is
easily generalized to find more complex features. There are several classes of HT that
differ by the imageinformation available. If theimageis arbitrary, the Standard Hough
Transform (SHT, [Trucco98]) should be used.

SHT, like all HT algorithms, considers a discrete set of single primitive parameters. If
lines should be detected, then the parametersare p and 6, such that theline equationis
p = xcos(B) +ysin(p) . Here

P isthe distance from the origin to the line, and

0 isthe angle between the axis x and the perpendicular to theline
vector that points from the origin to the line.

Every pixel in the image may belong to many lines described by a set of parameters. In
other words, the accumulator is defined which is an integer array A(p , 6) containing
only zeroesinitially. For each non-zero pixel in the image all accumulator elements
corresponding to lines that contain the pixel are incremented by 1. Then athreshold is
applied to distinguish lines and noise features, that is, select all pairs(p, o) for which
A(p, 0) is greater than the threshold value. All such pairs characterize detected lines.

Multidimensional Hough Transform (MHT) is a modification of SHT. It performs
precalculation of SHT on rough resolution in parameter space and detects the regions
of parameter values that possibly have strong support, that is, correspond to linesin the
source image. MHT should be applied to images with few lines and without noise.

[M atas98] presents advanced algorithm for detecting multiple primitives, Progressive
Probabilistic Hough Transform (PPHT). Theideais to consider random pixels one by
one. Every time the accumulator is changed, the highest peak istested for threshold
exceeding. If the test succeeds, points that belong to the corridor specified by the peak
are removed. If the number of points exceeds the predefined value, that is, minimum
line length, then the feature is considered a line, otherwise it is considered a noise.
Then the process repeats from the very beginning until no pixel remainsin theimage.
The algorithm improves the result every step, so it can be stopped any time. [M atas98]
claimsthat PPHT iseasly generalized in ailmost all cases where SHT could be
generalized. The disadvantage of this method is that, unlike SHT, it does not process
some features, for instance, crossed lines, correctly.

3-14

OpenCV Reference Manual Image Analysis 3

Image

For more information see [M atas98] and [Trucco98].

Statistics

This section describes a set of functions that compute various information about
images, considering their pixels as independent observations of a stochastic variable.

The computed values have statistical character and most of them depend on values of
the pixelsrather than on their relative positions. These statistical characteristics
represent integral information about a whole image or its regions.

Thefunctions Count NonZer o, SunPi xel s, Mean, Mean StdDev, M nMaxLoc
describe the characteristics that are typical for any stochastic variable or deterministic
set of numbers, such as mean value, standard deviation, min and max values.

The function Nor mdescribes the function for calculating the most widely used norms
for asingleimage or a pair of images. The latter is often used to compare images.

Thefunctions Monment s, Get Spati al Monent, Get Central Monent,

Get Nor mal i zedCent ral Monent, Get HuMbnent s describe moments functions for
calculating integral geometric characteristics of a2D object, represented by grayscale
or bi-level raster image, such as mass center, orientation, size, and rough shape
description. As opposite to simple moments, that are used for characterization of any
stochastic variable or other data, Hu invariants, described in the last function
discussion, are unique for image processing because they are specifically designed for
2D shape characterization. They are invariant to several common geometric
transformations.

Pyramids

This section describes functions that support generation and reconstruction of
Gaussian and Laplacian Pyramids.

Figure 3-9 shows the basics of creating Gaussian or Laplacian pyramids. The original
image & is convolved with a Gaussian, then down-sampled to get the reduced image
G,. This process can be continued as far as desired or until the image size is one pixel.

3-15

OpenCV Reference Manual Image Analysis 3

The Laplacian pyramid can be built from a Gaussian pyramid as follows: Laplacian
level “k” can be built by up-sampling the lower level image G ..,. Convolving the
image with a Gaussian kernel “g” interpolates the pixels “missing” after up-sampling.
The resulting image is subtracted from theimage G,. To rebuild the origina image, the
process is reversed as Figure 3-9 shows.

Figure 3-9 A Three-Level Gaussian and Laplacian Pyramid.

ga%g_, g

v

©
v
g_>¢ g g
7
7

u
intel. 316

OpenCV Reference Manual Image Analysis 3

The Gaussian image pyramid on the left is used to create the Laplacian pyramid in the
center, which is used to reconstruct the Gaussian pyramid and the original image on
theright. In the figure, I isthe original image, Gisthe Gaussian image, L isthe

L aplacian image. Subscripts denote level of the pyramid. A Gaussian kernel g is used
to convolve the image before down-sampling or after up-sampling.

Image Segmentation by Pyramid

Computer vision uses pyramid based image processing techniques on awide scale
now. The pyramid provides a hierarchical smoothing, segmentation, and hierarchical
computing structure that supports fast analysis and search algorithms.

P. J. Burt suggested a pyramid-linking algorithm as an effective implementation of a
combined segmentation and feature computation algorithm [Burt81]. This algorithm,
described also in [Jahne97], finds connected components without preliminary
threshold, that is, it works on grayscale image. It is an iterative algorithm.

Burt’s algorithm includes the following steps:
1. Computation of the Gaussian pyramid.
2. Segmentation by pyramid-linking.
3. Averaging of linked pixels.
Steps 2 and 3 are repeated iteratively until a stable segmentation result is reached.

After computation of the Gaussian pyramid a son-father relationship is defined
between nodes (pixels) in adjacent levels. The following attributes may be defined for
every node (i ,j) onthelevel | of the pyramid:

c[i,j,I][t] isthevaue of thelocal image property, e.g., intensity;

ali,j,l][t] istheareaover which the property has been computed,

p[[i,j,!I][t] ispointer tothe node sfather, whichisat level | +1;

s[i,j,I][t] isthesegment property, the average value for the entire segment
containing the node.

The letter t standsfor the iteration number (t >0). Fort =0, c[i,j,l1[0] = q',j .
For every node (i, j) atlevel | thereare 16 candidate sonnodesat level 1-1 (i’ ,j’),
where

3-17

OpenCV Reference Manual

Image Analysis 3

i'e{2i —1,2i,2i +1,2i +2},j'e{2j -1,2j,2] +1,2j +2}. (3.14)

For every node (i, j) atlevel | there are 4 candidate father nodes at level | +1

(i'’,j""), (seeFigure 3-10), where

i"e {(-1)/2i +1)/2},j"e{(-1)/2,j +1)/2}. (3.15)

Son-father links are established for all nodes below the top of pyramid for every
iterationt . Letd[n][t] be the absolute difference between the ¢ value of the node
(i,j)atlevel | anditsnth candidate father, then

pli,j,l1t]= argrgnn24d[n][t]

(3.16)

Figure 3-10 Connections between Adjacent Pyramid Levels

[, ", 1+

/

[i, j.1]

/

/

After the son-father relationship is defined, thet , ¢, and a values are computed from

bottom to the top for the o<1 <n as

a[li,j,0][t] =1,cli,j,0lft] =cli,j,O0l[0], ali,j,I]t]= Za[i i =100t],
where sum is calculated over all (i, j) node sons, asindicated by thelinksp in (3.16).

3-18

OpenCV Reference Manual Image Analysis 3

If afi,j,l1t1>0thencli,j,l1t] = S =1t il =it h/ali L j L e,
butif afi,j,0]t] = 0,thenodehasnosons, cli,j,0][t] isset to the value of one of its
candidate sons selected at random. No segment values are calculated in the top down
order. The value of the initial level L isan input parameter of the algorithm. At the
level L the segment value of each node is set equal to itslocal property value:

sli,j,LIlt] =cli,j,LIt].

For lower levels| <L each node value isjust that of its father

sliyj, Pt =cli™j"l +1]t].

Herenode (i’ ,j’) isthefather of (i, j), asestablished in Equation (3.16).
After this the current iteration t finishes and the next iteration t + 1 begins. Any

changes in pointers in the next iteration result in changes in the values of local image
properties.

The iterative processis continued until no changes occur between two successive
iterations.

The choice of L only determines the maximum possible number of segments. If the
number of segments less than the numbers of nodes at the level L, the values of
cli,j, L]t]areclustered into a number of groups equal to the desired number of
segments. The group average value is computed from the ¢ values of its members,
weighted by their areas a, and replaces the value ¢ for each node in the group.

See Pyramid Data Typesin Image Analysis Reference.

Morphology

This section describes an expanded set of morphol ogical operators that can be used for
noise filtering, merging or splitting image regions, as well as for region boundary
detection.

Mathematical Morphology is a set-theory method of image analysisfirst devel oped by
Matheron and Serra at the Ecole des Mines, Paris [Serra82]. The two basic
morphological operations are erosion, or thinning, and dilation, or thickening. All
operations involve an image A, called the object of interest, and a kernel element B,
called the structuring element. The image and structuring element could be in any
number of dimensions, but the most common use iswith a 2D binary image, or with a

3-19

OpenCV Reference Manual Image Analysis 3

3D grayscale image. The element B is most often a square or acircle, but could be any
shape. Just like in convolution, B isakernel or template with an anchor point.

Figure 3-11 shows dilation and erosion of object A by B. The element B is rectangular
with an anchor point at upper left shown as a dark square.

Figure 3-11 Dilation and Erosion of A by B

B Dilationby B

Erosion by B

If B, isthetranslation of B around the image, then dilation of object A by structuring
elementBis

A®B = it :Bth;eo}.

It means every pixel isin the set, if the intersection is not null. That is, a pixel under
the anchor point of Bismarked “on”, if at least one pixel of B isinside of A.

A®nB indicates the dilation is done n times.
Erosion of object A by structuring element Bis
AG®B = {t:B, cA}.

That is, apixel under the anchor of Bis marked “on”, if B isentirely within A.

u
intel. 320

OpenCV Reference Manual Image Analysis 3

AenB indicates the erosion isdone n times and can be useful in finding oA, the
boundary of A:

0A = A—(AGNB).
Opening of Aby Bis
A<B = (AGNB) ®nB. (3.17)
Closingof Aby Bis
AeB = (A®nB)OnB, (3.18)

wheren > 0.

Flat Structuring Elements for Gray Scale

Erosion and dilation can be donein 3D, that is, with gray levels. 3D structuring
elements can be used, but the simplest and the best way isto use aflat structuring
element B as shown in Figure 3-12. In the figure, B has an anchor dightly to the right of
the center as shown by the dark mark on B. Figure 3-12 shows 1D cross-section of both
dilation and erosion of agray level image A by aflat structuring element B.

3-21

OpenCV Reference Manual Image Analysis 3

Figure 3-12 Dilation and Erosion of Gray Scale Image.

Dilation of A by B

Erosion of A by B

In Figure 3-12 dilation is mathematically

sup A)
yepB[

u
intel. 322

OpenCV Reference Manual Image Analysis 3

and erosionis

inf A
y € B

Open and Close Gray Level with Flat Structuring Element

Thetypica position of the anchor of the structuring element B for opening and closing
isin the center. Subsequent opening and closing could be done in the same manner as
in the Opening (4.17) and Closing (4.18) equations above to smooth off jagged objects
as opening tends to cut off peaks and closing tendsto fill in valleys.

Morphological Gradient Function

A morphological gradient may be taken with the flat gray scale structuring elements as
follows:
(A® By 5¢) —(ABBy 4)

5 .

Top Hat and Black Hat

Top Hat (TH) isafunction that isolates bumps and ridges from gray scale objects. In
other words, it can detect areasthat are lighter than the surrounding neighborhood of A
and smaller compared to the structuring element. The function subtracts the opened
version of A from the gray scale object A:

grad(A) =

THg(A) = A—(AonBy 5,) -

Black Hat (THd) isthe dual function of Top Hat in that it isolates valleys and “cracks
off” ridges of a gray scale object A, that is, the function detects dark and thin areas by
subtracting A from the closed image A:

THI(A) = (AenB;,) —A.
Thresholding often follows both Top Hat and Black Hat operations.

Distance Transform

This section describes the distance transform used for calculating the distance to an
object. Theinput is an image with feature and non-feature pixels. The function labels
every non-feature pixel in the output image with a distance to the closest feature pixel.

u
intel. 323

OpenCV Reference Manual Image Analysis 3

Feature pixels are marked with zero. Distance transform is used for awide variety of
subjects including skeleton finding and shape analysis. The [Borgefors86] two-pass
algorithm isimplemented.

Thresholding

This section describes threshold functions group.

Thresholding functions are used mainly for two purposes.

— masking out some pixels that do not belong to a certain range, for example, to
extract blobs of certain brightness or color from the image;

— converting grayscale image to bi-level or black-and-white image.
Usually, the resultant image is used asamask or as a source for extracting higher-level

topological information, e.g., contours (see Active Contours), skeletons (see Distance
Transform), lines (see Hough Transform functions), etc.

Generally, threshold is a determined functiont (x, y) on theimage:

t“y):{Nmky»ﬂK%pUJD=trw
’ B(p(x,¥)), f(x,y,p(x,y)) = fal se

The predicate functionf (x, y, p(x, y)) istypically represented as g(x,y) < p(x,Yy)
< h(x,y),whereg and h are some functions of pixel value and in most casesthey are
simply constants.

There are two basic types of thresholding operations. The first type uses a predicate
function, independent from location, that is, g(x, y) and h(x, y) are constants over the
image. However, for concrete image some optimal, in asense, values for the constants
can be cal culated using image histograms (see Histogram) or other statistical criteria
(see Image Statistics). The second type of the functions chooses g(x, y) and

h(x, y) depending on the pixel neigborhood in order to extract regions of varying
brightness and contrast.

The functions, described in this chapter, implement both these approaches. They
support single-channel images with depth | PL_DEPTH_8U, | PL_DEPTH_8S Or
| PL_DEPTH_32F and can work in-place.

3-24

OpenCV Reference Manual Image Analysis 3

Flood Filling

This section describes the function performing flood filling of a connected domain.

Flood filling means that a group of connected pixelswith close valuesisfilled with, or
isset to, acertain value. The flood filling process starts with some point, called “seed”,
that is specified by function caller and then it propagates until it reaches the image RO
boundary or cannot find any new pixelsto fill due to alarge difference in pixel values.
For every pixel that isjust filled the function analyses:

* 4 neighbors, that is, excluding the diagonal neighbors; this kind of connectivity is
called 4-connectivity, or

* 8 neighbors, that is, including the diagonal neighbors; thiskind of connectivity is
called 8-connectivity.

The parameter connect i vi ty of the function specifies the type of connectivity.

The function can be used for:
* segmenting agrayscale image into a set of uni-color areas,
* marking each connected component with individual color for bi-level images.

The function supports single-channel images with the depth | PL_DEPTH_8U or
| PL_DEPTH_32F.

Histogram

This section describes functions that operate on multi-dimensional histograms.

Histogram is a discrete approxi mation of stochastic variable probability distribution.
The variable can be either ascalar or avector. Histograms are widely used in image
processing and computer vision. For example, one-dimensional histograms can be
used for:

* grayscale image enhancement
* determining optimal threshold levels (see Thresholding)

* sdlecting color objects via hue histograms back projection (see CamsShift), and
other operations.

Two-dimensional histograms can be used for:

3-25

OpenCV Reference Manual Image Analysis 3

* analyzing and segmenting color images, normalized to brightness (e.g. red-green
or hue-saturation images),

* analyzing and segmenting motion fields (x- y or magnitude-angle histograms),

* analyzing shapes (see Cal cPGHin Geometry Functions section of Structural
Analysis Reference) or textures.

Multi-dimensional histograms can be used for:
* content based retrieval (seethe function cal cPGH),
* bayesian-based object recognition (see [Schiele00]).

To store all the types of histograms (1D, 2D, nD), OpenCV introduces special
structure CvHi st ogr amdescribed in Example 10-2 in Image Analysis Reference.

Any histogram can be stored either in adense form, as a multi-dimensional array, or in
a sparse form with a balanced tree used now. However, it is reasonable to store 1D or

2D histograms in a dense form and 3D and higher dimensional histogramsin a sparse
form.

Thetype of histogram representation is passed into histogram creation function and
thenitisstored int ype field of cvHi st ogr am The function

MVakeHi st Header For Arr ay can be used to process histograms allocated by the user
with Histogram Functions.

Histograms and Signatures

Histograms represent a simple statistical description of an object, e.g., an image. The
object characteristics are measured during iterating through that object: for example,
color histograms for an image are built from pixel values in one of the color spaces.
All possible values of that multi-dimensional characteristic are further quantized on
each coordinate. If the quantized characteristic can take different k, values on the first
coordinate, k, valueson second, and k, on the last one, the resulting histogram has

thesize

n
size = [Tk -

i=1

3-26

OpenCV Reference Manual Image Analysis 3

The histogram can be viewed as a multi-dimensiona array. Each dimension
corresponds to a certain object feature. An array element with coordinates[i ;,i, ...

i o] , otherwise called a histogram bin, contains a number of measurements done for the
object with quantized value equal toi ; on first coordinate, i , on the second
coordinate, and so on. Histograms can be used to compare respective objects:

D (HK) = S| —k; |, Or

DH K) = (R —K) AR -K).

But these methods suffer from several disadvantages. The measure b sometimes
givestoo small difference when there is no exact correspondence between histogram
bins, that is, if the bins of one histogram are slightly shifted. On the other hand,

D, gives too large difference due to cumulative property.

Another drawback of pure histogramsis|arge space required, especially for
higher-dimensional characteristics. The solution is to store only non-zero histogram
bins or afew bins with the highest score. Generalization of histogramsis termed
signature and defined in the following way:

1. Characteristic values with rather fine quantization are gathered.
2. Only non-zero bins are dynamically stored.

This can be implemented using hash-tables, balanced trees, or other sparse structures.
After processing, a set of clustersis obtained. Each of them is characterized by the
coordinates and weight, that is, a number of measurementsin the neighborhood.
Removing clusters with small weight can further reduce the signature size. Although
these structures cannot be compared using formulaswritten above, there exists arobust
comparison method described in [RubnerJan98] called Earth Mover Distance.

Earth Mover Distance (EMD)

Physically, two signatures can be viewed as two systems - earth masses, spread into
several localized pieces. Each piece, or cluster, has some coordinates in space and
weight, that is, the earth massit contains. The distance between two systems can be
measured then as aminimal work needed to get the second configuration from thefirst
or vice versa. To get metric, invariant to scale, the result isto be divided by the total
mass of the system.

3-27

OpenCV Reference Manual Image Analysis 3

Mathematically, it can be formulated as follows.

Consider msuppliers and n consumers. Let the capacity of i th supplier bex; and the
capacity of j th consumer be y; - Also, let the ground distance between i th supplier and
j th consumer bec; i - The following restrictions must be met:

xiZQijQchzm

in Zzyj)

0<i <mO0<j <n.

Then the task isto find the flow matrix |f;; |, where f,; isthe amount of earth,

transferred from i th supplier to j th consumer. This flow must satisfy the restrictions
below:

f, 20,

Zfi,j <X,
i
i =y
j

and minimize the overall cost:

mi nZZci,j,fi,j .
i

If |f;;] isthe optimal flow, then Earth Mover Distance is defined as

PILNLEN
EMD(X,y) = b,
22t
i
Thetask of finding the optimal flow isawell known transportation problem, which
can be solved, for example, using the simplex method.

u
intel. 328

OpenCV Reference Manual Image Analysis 3

Example Ground Distances

As shown in the section above, physically intuitive distance between two systems can
be found if the distance between their elements can be measured. The latter distanceis
called ground distance and, if it is atrue metric, then the resultant distance between
systemsisametric too. The choice of the ground distance depends on the concrete task
aswell as the choice of the coordinate system for the measured characteristic. In
[RubnerSept98], [RubnerOct98] three different distances are considered.

1.

Thefirst is used for human-like color discrimination between pictures. CIE
Lab model represents colors in away when a simple Euclidean distance gives
true human-like discrimination between colors. So, converting image pixels
into CIE Lab format, that is, representing colors as 3D vectors (L,a,b), and
guantizing them (in 25 segments on each coordinate in [Rubner Sept98]),
produces a color-based signature of the image. Although in experiment, made
in [RubnerSept98], the maximal number of non-zero bins could be 25x25x 25
= 15625, the average number of clusterswas ~8.8, that is, resulting signatures
were very compact.

The second example is more complex. Not only the color values are
considered, but also the coordinates of the corresponding pixels, which makes
it possible to differentiate between pictures of similar color palette but
representing different color regions placements: e.g., green grass at the bottom
and blue sky on top vs. green forest on top and blue lake at the bottom. 5D
space is used and Metric is: [(AL)2+ (Aa)?+ (Ab)2 + A((Ax)2 + (ay)D)1 -, where A
regulates importance of the spatial correspondence. When » =0, the first
metric is obtained.

The third example is related to texture metrics. In the example Gabor
transform is used to get the 2D vector texture descriptor (1, m, whichisa
log-polar characteristic of the texture. Then, no-invariance ground distance is
defined as: d((1, m), (I 5 my)) = Al [+olAn), Al = min([l =1, L—|l ;=1 4],

Am = |m —my| , where o isthe scale parameter of Gabor transform, L isthe
number of different angles used (angle resolution), and Mis the number of
scales used (scale resolution). To get invariance to scale and rotation, the user
may calculate minimal EMD for several scales and rotations:

(I, mp, (1 my)

3-29

OpenCV Reference Manual Image Analysis 3

EMD(t 4, t,) = m n (I)ELVID(<tLl’t 2 oMy,
—M<np<M
where d is measured asin the previous case, but Al and Am look dightly different:

Al = min(l =1 ,+1 g(modL)|, L —|l =1 ,+1 g(modL)|), Am = |my —m, +my .

Lower Boundary for EMD

If ground distance ismetric and distance between points can be calculated viathe norm
of their difference, and total suppliers capacity isequal to total consumers capacity,
then it is easy to calculate lower boundary of EMD because:

PIILBELINELDIPY Lial'] IENED I LIl If LI
£3lp et = |2z o -z

i i
>

j
S

As it can be seen, the latter expression isthe distance between the mass centers of the
systems. Poor candidates can be efficiently rejected using this lower boundary for EMD
distance, when searching in the large image database.

u
intel. 330

Sructural Analysis

Contour Processing

This section describes contour processing functions.

Polygonal Approximation

Assoon as all the borders have been retrieved from the image, the shape representation
can be further compressed. Severa algorithms are available for the purpose, including

RLE coding of chain codes, higher order codes (see Figure 4-1), polygonal
approximation, etc.

Figure 4-1 Higher Order Freeman Codes

24-Point Extended Chain Code

OpenCV Reference Manual Sructural Analysis 4

Polygonal approximation is the best method in terms of the output data simplicity for
further processing. Below follow descriptions of two polygonal approximation
algorithms. The main idea behind them is to find and keep only the dominant points,
that is, points where the local maximums of curvature absolute val ue are located on the
digital curve, stored in the chain code or in another direct representation format. The
first step hereis the introduction of a discrete analog of curvature. In the continuous
case the curvature is determined as the speed of the tangent angle changing:

k _ X,y”—X”y,
- 2 ,2.3/2°
(X7 +y™)

In the discrete case different approximations are used. The simplest one, called L1
curvature, is the difference between successive chain codes:

¢,V = ((f; -f; _,+4)mod8)-4. (4.1

This method covers the changes from O, that corresponds to the straight line, to 4, that
corresponds to the sharpest angle, when the direction is changed to reverse.

The following agorithm is used for getting a more complex approximation. First, for
the given point (x; , y;) theradiusm of the neighborhood to be considered is selected.
For some algorithms m isamethod parameter and has a constant val ue for all points;
for othersit is calculated automatically for each point. The following valueis
calculated for all pairs (x; .y, yi-«) and (X; 4, Vi +x) (k=1. .. m):

(@i byy)
T Tai [P k]
where a;, = (¢ _i =% Y _k=Yi) s B = (i =X Y k= Yi) -

c = cos(a; ,b;),

Thenext step isfinding theindex h; suchthat c; ,<c,, _;<...<c;, =¢;p _,. Thevalue
c;, isregarded asthe curvature value of the ith point. The point value éhang% from
—1 (straight line) to 1 (sharpest angle). This approximation is called the k-cosine
curvature.

Rosenfel d-Johnston algorithm [Rosenfeld73] is one of the earliest algorithms for
determining the dominant points on the digital curves. The algorithm requires the
parameter m the neighborhood radius that is often equal to 1/10 or 1/15 of the number
of pointsin the input curve. Rosenfeld-Johnston algorithm is used to calculate
curvature values for al points and remove points that satisfy the condition

Jj.li —jl<h; /2, Cin, <Cj h, -

4-2

OpenCV Reference Manual Sructural Analysis 4

The remaining points are treated as dominant points. Figure 4-2 shows an example of
applying the algorithm.

Figure 4-2 Rosenfeld-Johnston Output for F-Letter Contour

Source Image Rosenfeld-Johnston Algorithm Output

The disadvantage of the algorithm isthe necessity to choose the parameter mand
parameter identity for all the points, which resultsin either excessively rough, or
excessively precise contour approximation.

The next algorithm proposed by Teh and Chin [Teh89] includes a method for the
automatic selection of the parameter mfor each point. The algorithm makes several
passes through the curve and deletes some points at each pass. At first, all points with
zero ¢; P curvatures are deleted (see Equation 5.1). For other points the parameter m
and the curvature value are determined. After that the algorithm performs a
non-maxima suppression, same as in Rosenfeld-Johnston agorithm, del eting points
whose curvature satisfies the previous condition where for ¢, © the metric h; isset to
m . Finally, the algorithm replaces groups of two successive remaining points with a
single point and groups of three or more successive points with a pair of the first and
the last points. This algorithm does not require any parameters except for the curvature
to use. Figure 4-3 shows the algorithm results.

4-3

OpenCV Reference Manual Sructural Analysis 4

Figure 4-3 Teh-Chin Output for F-Letter Contour

Source Picture Teh-Chin Algorithm Output

Douglas-Peucker Approximation

Instead of applying arather sophisticated Teh-Chin algorithm to the chain code, the
user may try another way to get a smooth contour on alittle number of vertices. The
ideaisto apply some very simple approximation techniques to the chain code with
polylines, such as substituting ending points for horizontal, vertical, and diagonal
segments, and then use the approximation algorithm on polylines. This preprocessing
reduces the amount of data without any accuracy loss. Teh-Chin algorithm also
involves this step, but uses removed points for cal culating curvatures of the remaining
points.

The algorithm to consider is a pure geometrical algorithm by Douglas-Peucker for
approximating a polyline with another polyline with required accuracy:

1. Two points on the given polyline are selected, thus the polylineis
approximated by the line connecting these two points. The algorithm
iteratively adds new points to thisinitial approximation polyline until the

4-4

OpenCV Reference Manual Sructural Analysis 4

required accuracy is achieved. If the polyline is not closed, two ending points
are selected. Otherwise, some initial algorithm should be applied to find two
initial points. The more extreme the points are, the better.

2. Thealgorithm iterates through all polyline vertices between the two initial
vertices and finds the farthest point from the line connecting two initial
vertices. If this maximum distance isless than the required error, then the
approximation has been found and the next segment, if any, is taken for
approximation. Otherwise, the new point is added to the approximation
polyline and the approximated segment is split at this point. Then the two parts
are approximated in the same way, since the algorithm is recursive. For a
closed polygon there are two polygonal segments to process.

Contours Moments

The moment of order (p; q) of an arbitrary region Ris given by

Voq = ”xp-yqudy . (4.2)
R

If p = q = 0, weobtain the areaa of R. The moments are usually normalized by the
areaa of R. These moments are called normalized moments:

Opg = (1/a)”xp-yqudy . (4.3)
R

Thus o, = 1. For p +q =2 normalized central moments of R are usually the ones of
interest:

g = 1/a”(x —alo)p -(y —ag)‘dxdy (4.4)
R

It is an explicit method for calculation of moments of arbitrary closed polygons.
Contrary to most implementations that obtain moments from the discrete pixel data,
this approach cal culates moments by using only the border of aregion. Since no
explicit region needs to be constructed, and because the border of aregion usually
consists of significantly fewer points than the entire region, the approach is very
efficient. The well-known Green's formulais used to cal culate moments:

4-5

OpenCV Reference Manual Sructural Analysis 4

”(aQ/(ax —9P/dy)dxdy = j(de +Qdy),
R b
where b is the border of the region R.
It follows from the formula (4.2) that:
oQ/ax = xP.y% 9psay =0,
hence
P(X,y) = 0,Qx,y) = 1/(p+1)-x" "lyT.
Therefore, the moments from (4.2) can be calculated as follows:
Vo = J(/(p+xP Tty Dy . (4.5)

b

If the border b consists of n points p; = (x;,y;), 0<i <n, py = p,,, it follows that:

bt) = b (),
i =1
where b, (t), t € [0,1] isdefined as
bi(t) =tp+(1-t)p, _,.
Thereforge, (4.5) can be calculated in the following manner:
Vog = 3 J@/p+1x" "y Dy (4.6)

i :lb]

After unnormalized moments have been transformed, (4.6) could be written as:
1

+
®+a+2p+a+n(’)

VpA =

n p q
k +t +q-k-—t - _
X 3G =X YD) DL D (¢)(p z—t)X:(Xip—liy}y?—tl

i=1 k=0i =0

intel.

4-6

OpenCV Reference Manual

Sructural Analysis 4

Central unnormalized and normalized moments up to order 3 look like

a=1/2 Z X; _Yi =X Y

a0

ay

i=1
n

-1

1/(6a) Z (X _qYi =% Yi D) Z1tX%),

i=1

1

1/(6a) Z (Xi —1Yi XY _1)(yi 1Y),

i =1
1/(12a) 3 (X; _1;
i =1
1/(24a) 3 (X; 1,
i =1
1/(12a) 3 (X; _1;
i =1
1/(202) 3" (X; _1;
i =1
1/(60a) 3" (X; _1;
i =1

2
X7 (Y Z1+3Y),

a;, = 1/(60a) Z (X _1Yi

i=1

yiz(xi _1+3%,)),

U =

n

1/(20) ¥ (% _qy;
i=1

Olpp =00

—Xi Vi L)X 1 X g% +XD),

=X Yi —)(2X _ X gy XY 1t 2XY),
=X Y —1)(yi2—1+yi —1Yi +yi2),

SXi Vi DG g XX HXEXG X)),

2
=XV)X 2 BY G Z T Y) 22X X (Yt Y

2
=XV DY CaBX St X) F 2y Y (X X))

3 2 2 3
=X Yi OO catYi oY HYiYi oY),

4-7

OpenCV Reference Manual Sructural Analysis 4

M1y = Olgg —Ogolog s
_ 2
Moz = Olgp = Qg s
= Ol + 205, -3
Hzp = Oigg+ 209 = S50y00oq »
3
Hop = Ol +200340g — 2003015 — OlppOlgy
_ 3
Hyp = Olgp + 200y Olgg— 200 Ogq — OOty

_ 3
Moz = Ogg + 201y — 301y, 0y *

Hierarchical Representation of Contours

Let T be the smple closed boundary of a shape with n points T:{p(1), p(2), ..., p(n)}
andn runs: (s(1),s(2), ..., s(n) }. Every run s(i) isformed by the two points

(p(i), p(i +1)). For every pair of the neighboringruns s(i) and s(i +1) atriangleis
defined by the two runs and the line connecting the two far ends of the two runs

(Figure 4-4).

Figure 4-4 Triangles Numbering

Trianglest (i —2),t(i -1),t(i +1),t(i +2) arecaled neighboring triangles of t (i)
(Figure 4-5).

intel.

OpenCV Reference Manual Sructural Analysis 4

Figure 4-5 Location of Neighboring Triangles

For every straight line that connects any two different vertices of a shape, the line
either cuts off aregion from the original shape or fillsin aregion of the original shape,
or does both. The size of the region is called the interceptive area of that line

(Figure 4-6). Thislineis called the base line of the triangle.

A triangle made of two boundary runs is the locally minimum interceptive area
triangle (LMIAT) if the interceptive area of its base line is smaller than both its

neighboring triangles areas.

OpenCV Reference Manual Sructural Analysis 4

Figure 4-6 Interceptive Area

<4— Basline

The shape-partitioning algorithm is multilevel. This procedure subsequently removes
some points from the contour; the removed points become children nodes of the tree.
On each iteration the procedure examines the triangles defined by all the pairs of the
neighboring edges along the shape boundary and finds all LMIATSs. After that all
LMIATswhose areas are less than areference value, which isthe algorithm parameter,
areremoved. That actually means removing their middle points. If the user wants to
get a precise representation, zero reference value could be passed. Other LMIATs are
also removed, but the corresponding middle points are stored in the tree. After that
another iteration is run. This process ends when the shape has been smplified to a
quadrangle. The agorithm then determines adiagonal line that divides this quadrangle
into two triangles in the most unbal anced way.

Thusthe binary tree representation is constructed from the bottom to top levels. Every
tree node is associated with one triangle. Except the root node, every node is connected
to its parent node, and every node may have none, or single, or two child nodes. Each
newly generated node becomes the parent of the nodes for which the two sides of the
new node form the base line. The triangle that usesthe | eft side of the parent triangleis
theleft child. Thetriangle that uses the right side of the parent triangleistheright child

(See Figure 4-7).

4-10

OpenCV Reference Manual Sructural Analysis 4

Figure 4-7 Classification of Child Triangles

Theroot node is associated with the diagonal line of the quadrangle. This diagonal line
divides the quadrangl e into two triangles. The larger triangle is the left child and the
smaller triangleisits right child.

For any tree node we record the following attributes:

* Coordinatesx andy of the vertex P that do not lie on the base line of LMIAT, that
is, coordinates of the middle (removed) point;

* Areaof thetriangle;
* Ratio of the height of the triangle h to the length of the base linea (Figure 4-8);

* Ratio of the projection of the left side of the triangle on the baselineb to the length
of the baseline a;

* Signs“+” or“-"; thesign “+” indicates that the triangle lies outside of the new
shape due to the ‘cut’ type merge; thesign “- ” indicates that the triangle liesinside
the new shape.

L}
intel.

OpenCV Reference Manual Sructural Analysis 4

Figure 4-8 Triangles Properties

Figure 4-9 shows an example of the shape partitioning.

Figure 4-9 Shape Partitioning

AV

D- E+

It is necessary to note that only the first attribute is sufficient for source contour
reconstruction; all other attributes may be calculated from it. However, the other four
attributes are very helpful for efficient contour matching.

L}
intel.

OpenCV Reference Manual Sructural Analysis 4

The shape matching process that compares two shapes to determine whether they are
similar or not can be effected by matching two corresponding tree representations, e.g.,
two trees can be compared from top to bottom, node by node, using the breadth-first
traversing procedure.

L et us define the corresponding node pair (CNP) of two binary tree representations TA
and TB. The corresponding node pair is called [A(i), B(i)], if A(i) andB(i) areat the
same level and same position in their respective trees.

The next step is defining the node weight. The weight of N(i) denoted as WN(i)] is
defined as the ratio of the size of N(i) to the size of the entire shape.

LetN(i) and N(j) betwo nodeswith heightsh(i) and h(j) and base lengthsa(i)
and a(j) respectively. The projections of their left sides on their base lines areb(i)
andb(j) respectively. The node distance dn[N), N(j)] between N(i) and N(j) is
defined as:

dn[NG), NG)T = |h(i)/a(i)-WING)] Fh()/al) - WNG)|
+lb(i)7al) - WNG)TFb()/ad) - WNGHI|

In the above equation, the “+” signs are used when the signs of attributesin two nodes
are different and the “- ” signs are used when the two nodes have the same sign.

For two trees TA and TB representing two shapes SA and SB and with the corresponding
node pairs [A(1), B(1)],[A(2), B(2)],..., [A(n), B(n)] thetree distancedt (TA, TB) between
TAand TB is defined as:

dt (TA, TB) = 3" dn[AGi), B(i)]
i =1

If the two trees are different in size, the smaller tree is enlarged with trivial nodes so
that the two trees can be fully compared. A trivial node isanode whose size attribute is
zero. Thus, the trivial node weight is also zero. The values of other node attributes are
trivial and not used in matching. The sum of the node distances of the first k CNPs of
TA and TB is called the cumulative tree distance dt (TA, TB, k) and is defined as:

dc(TA, TB, k) = 3 dn[AGi), B(i)] .
i =1

4-13

OpenCV Reference Manual Sructural Analysis 4

Cumulative tree distance shows the dissimilarity between the approximations of the
two shapes and exhibits the multiresolution nature of the tree representation in shape
matching.

The shape matching algorithm is quite straightforward. For two given tree
representations the two trees are traversed according to the breadth-first sequenceto
find CNPs of the two trees. Next dn[A(i), B(i)] and dc(TA, TB, i) are calculated for
every i . If for somei dc(TA TB,i)islarger than the tolerance threshold value, the
matching procedure is terminated to indicate that the two shapes are dissimilar,
otherwise it continues. If dt (TA, TB) is till less than the tolerance threshold value,
then the procedure is terminated to indicate that there is a good match between TA and
TB.

Geometry

Ellipse

This section describes functions from computational geometry field.

Fitting

Fitting of primitive models to the image datais a basic task in pattern recognition and
computer vision. A successful solution of this task results in reduction and
simplification of the data for the benefit of higher level processing stages. One of the
most commonly used modelsisthe ellipse which, being a perspective projection of the
circle, is of great importance for many industrial applications.

The representation of general conic by the second order polynomial is
FE, %) =&, X =ax’+bxy +cy’+dx +ey +f = oTwith the vectors denoted as
3 =[a, b,c,d,e,f]T and X = [xz, xy,yz,x,y,l] .

F(&,X) iscalled the “algebraic distance between point (x,, y,) and conic F(a, x) “.

Minimizing the sum of squared algebraic distances " F()?())Z may approach thefitting
of conic. i=1

In order to achieve ellipse-specific fitting polynomial coefficients must be constrained.
For ellipse they must satisfy b?-4ac <0.

4-14

OpenCV Reference Manual Sructural Analysis 4

M oreover, the equality constraint 4ac —b” = 1.can be imposed in order to incorporate
coefficients scaling into constraint.

This constraint may be written asamatrix 3'ci = 1.

Fi naIIy, the problem could be formulated as minimizing |pa|*> with constraint
a'cd = 1, where D isthe nx6 Matrix [x;, X,...., x,1 -

Introducing the Lagrange multiplier results in the system

2D'DA-20C3 = 0 , which can be re-written as

a'cg =1
S3 = 20.C3
a'c3 = 1

The system solution is described in [Fitzgibbon95].

After the system is solved, ellipse center and axis can be extracted.

Line Fitting

M -estimators are used for approximating a set of points with geometrical primitives
e.g., conic section, in cases when the classical |east squares method fails. For example,
theimage of aline from the camera contains noisy data with many outliers, that is, the
pointsthat lie far from the main group, and the least squares method fails if applied.

The least squares method searches for a parameter set that minimizes the sum of
squared distances:

m=$d?,
i

whered; is the distance from theith point to the primitive. The distance typeis
specified as the function input parameter. If even afew points have alarged, , then the
perturbation in the primitive parameter values may be prohibitively big. The solutionis
to minimize

m = Zp(d|)!

4-15

OpenCV Reference Manual Sructural Analysis 4

wherep(d;) grows slower than d?. This problem can be reduced to weighted least
squares [Fitzgibbon95], which is solved by iterative finding of the minimum of
m = Ywd " hd?,

where k is the iteration number, d*~* is the minimizer of the sum on the previous

iteration, and Wx) =)%3—)‘(’ .1fd; isalinear function of parameters p; —d; = 3 A;; p;

then the minimization vector of the m_ isthe eigenvector of A™A matrix tht
corresponds to the smallest eigenvalue.

For more information see [Zhang96].

Convexity Defects

Let (py, p, -..p,) beaclosed simple polygon, or contour, and (h,, h,, ...h,) aconvex
hull. A sequence of contour points exists normally between two consecutive convex
hull vertices. This sequence forms the so-called convexity defect for which some
useful characteristics can be computed. Computer Vision Library computes only one
such characteristic, named “depth” (see Figure 4-10).

Figure 4-10 Convexity Defects

u
intgl. 416

OpenCV Reference Manual Sructural Analysis 4

The black lines belong to the input contour. The red lines update the contour to its
convex hull.

The symbols*“s’ and “€” signify the start and the end points of the convexity defect.
The symbol “d” isacontour point located between “s” and “€” being the farthermost
from the line that includes the segment “se”. The symbol “h” stands for the convexity
defect depth, that is, the distance from “d” to the “se” line.

See CvConvexi t yDef ect structure definition in Structural Analysis Reference.

4-17

OpenCV Reference Manual Sructural Analysis 4

L}
intel.

Object Recognition

Eigen

Objects

This section describes functions that operate on eigen objects.

Let us define an object u = {uy, u,...,u,} asavector in the n-dimensional space. For
example, u can be an image and its components u;, are the image pixel values. In this
casen isegual to the number of pixelsin theimage. Then, consider a group of input
objects u' = {ul,u},..,u' 1, where i =1, ... mandusualy m << n. The averaged, or
mean, object u = {u,,0,, ..., 0,} Of thisgroup is defined as follows:

Covarignce matrix C = [¢j;| is asquare symmetric matrix mxm:
¢y = Y (-0l -7)).

I =1

Eigen objectsbasis e' = {e.eb....,e!}, i = 1, .., m <m of theinput objects group
may be calculated using the following relation:

m
) 1) B
e: :TZVL-(U:(—U|),

2

where i, and v' = {v}, v}, ..v| 1 areeigenvalues and the corresponding eigenvectors
of matrix C.

5-1

OpenCV Reference Manual Object Recognition 5

Any input object ui aswell as any other object u may be decomposed in the eigen
objects m - D sub-space. Decomposition coefficients of the object u are:
W=y e: (U =0p).

I =1

Using these coefficients, we may calculate projection a = {a,, d,...,a,} of the object u
to the eigen objects sub-space, or, in other words, restore the object u in that sub-space:

Iy

k,
ap = > wee, +0; .
k=1

For examples of use of the functions and relevant data types see Image Recognition
Reference Chapter.

Embedded Hidden Markov Models

This section describes functions for using Embedded Hidden Markov Models (HMM)
in face recognition task. See Reference for HMM Structures.

5-2

OpenCV Reference Manual Object Recognition 5

intel. 53

OpenCV Reference Manual Object Recognition 5

L}
intel.

3D

Reconstruction

Camera Calibration

This section describes camera calibration and undistortion functions.

Camera Parameters

Camera calibration functions are used for calculating intrinsic and extrinsic camera
parameters.

Camera parameters are the numbers describing a particular camera configuration.

The intrinsic camera parameters specify the camera characteristics proper; these
parameters are:

* focal length, that is, the distance between the cameralens and the image plane,
* |ocation of the image center in pixel coordinates,

* effective pixel size,

* radia distortion coefficient of the lens.

The extrinsic camera parameters describe spatial relationship between the camera and
theworld; they are

® rotation matrix,
* translation vector.
They specify the transformation between the camera and world reference frames.

A usua pinhole camerais used. The relationship between a 3D point m and itsimage
projection m is given by the formula

m = A[Rt |M,

where A isthe cameraintrinsic matrix:

6-1

OpenCV Reference Manual 3D Reconstruction 6

(c, c,) arecoordinates of the principal point;
(f,.f,) arethefoca lengths by the axesx andy;

(R t) areextrinsic parameters: the rotation matrix R and translation vector t that
relate the world coordinate system to the camera coordinate system:

ETRETRET ty
R=ry Tyl t = Ity
Fag M3 las ts

Camera usually exhibits significant lens distortion, especially radia distortion. The
distortion is characterized by four coefficients: k4, k», p1, po. The functions

UnDi stort Once and UnDi stortlnit + UnDi stort correct theimage from the
camera given the four coefficients (see Figure 6-2).

The following algorithm was used for camera calibration:
1. Find homography for all points on series of images.
2. Initialize intrinsic parameters; distortion is set to 0.
3. Find extrinsic parameters for each image of pattern.
4. Make main optimization by minimizing error of projection points with all

parameters.
Homography
hll h12 13
H = |h, h,, h,| ISthematrix of homography.
h31 h32 h33

Without any loss of generality, the model plane may be assumed to be z = 0 of the
world coordinate system. If r, denotes thei th column of the rotation matrix r, then:

OpenCV Reference Manual 3D Reconstruction 6

u X X
sly| = Alr roratl = Y] = Afryr, tly|-
0 1
1

By abuse of notation, m is still used to denote a point on the model plane, that is,
M-~[X Y], sincez isalways equal to 0. Initsturn, M= [X,v, 11" . Therefore, amodel
point Mand its image mare related by the homography H:

sm=HUWIithH=A[r;r, t].

It is clear that the 3x3 matrix H is defined without specifying a scalar factor.

Pattern

To calibrate the camera, the calibration routine is supplied with several views of a
planar model object, or pattern, of known geometry. For every view the points on the
model plane and their projections onto the image are passed to the calibration routine.
In OpenCV a chessboard pattern isused (see Figure 6-1). To achieve more accurate
calibration results, print out the pattern at high resol ution on high-quality paper and put
it on ahard, preferably glass, substrate.

Figure 6-1 Pattern

OpenCV Reference Manual 3D Reconstruction 6

Lens Distortion

Any camera usually exhibits significant lens distortion, especially radial distortion.
The distortion is described by four coefficients: two radial distortion coefficientsk,
ko, and two tangential ones p4, p,.

Let (u,v) betrue pixel image coordinates, that is, coordinates with ideal projection,
and (o, v) be corresponding real observed (distorted) image coordinates. Similarly,
(x,y) areideal (distortion-free) and (x,y) arereal (distorted) image physical
coordinates. Taking into account two expansi on terms gives the following:

R = X +X[Kqr 2+ kor 1+ [2p,xy +p,(r 2+ 2x7)]

y =y +y[k1r2+k2r4] +[2p,yxy +p2(r2+2y2)],

wherer2 = x2 + y2. Second addends in the above relations describe radial distortion
and the third ones - tangential. The center of the radial distortion is the same as the
principal point. Becausea = c, +f,u andv = ¢ +f v,wherec,,c,, f,,andf, are
components of the camera intrinsic matrix, the resultant system can be rewritten as
follows:

2
a=u +(u—cx)[klr2+k2r4+2ply +p2(r;-+2x)}

2 4 r 2
v = v+(v—cy)[klr +Kor +2p2x+pl(7+2yﬂ.
The latter relations are used to undistort images from the camera.

The group of camera undistortion functions consists of UnDi st or t Once,

UnDi stortlnit,and UnDistort.If only asingleimage isrequired to be corrected,
cvUnDi st or t Once function may be used. When dealing with a number of images
possessing similar parameters, e.g., a sequence of video frames, use the other two
functions. In this case the following sequence of actions must take place:

1. Allocate dat a array of length
<i mage_wi dt h>*<i nage_hei ght >*<nunber _of _i mage_channel s>.

2. Cadll thefunction UnDi stortlnit that fillsthe dat a array.
3. Call thefunction unDi st ort for each frame from the camera.

OpenCV Reference Manual 3D Reconstruction 6

Figure 6-2 Correcting Lens Distortion

Image With Lens Distortion Image With Corrected Lens Distortion

Rotation Matrix and Rotation Vector

Rodrigues conversion function Rodr i gues isamethod to convert arotation vector to a
rotation matrix or vice versa.

View Morphing

This section describes functions for morphing views from two cameras.

The View Morphing technique is used to get an image from avirtual camerathat could
be placed between two real cameras. The input for View Morphing algorithms are two
images from real cameras and information about correspondence between regions in
the two images. The output of the algorithmsisasynthesized image - "aview from the
virtual camera’.

This section addresses the problem of synthesizing images of real scenes under
three-dimensional transformation in viewpoint and appearance. Solving this problem
enables interactive viewing of remote scenes on a computer, in which a user can move
the virtual camerathrough the environment. A three-dimensional scene transformation
can be rendered on avideo display device through applying simple transformation to a

6-5

OpenCV Reference Manual 3D Reconstruction 6

set of basisimages of the scene. The virtue of these transformationsis that they operate
directly on the image and recover only the scene information that is required to
accomplish the desired effect. Consequently, the transformations are applicablein a
situation when accurate three-dimensional models are difficult or impossible to obtain.

The algorithm for synthesis of avirtual cameraview from a pair of images taken from
real cameras is shown below.

Algorithm
1. Find fundamental matrix, for example, using correspondence pointsin the
images.
Find scanlines for each image.
Warp the images across the scanlines.
Find correspondence of the warped images.
Morph the warped images across position of the virtual camera.
Unwarp the image.
Delete moire from the resulting image.

No gk~ wDd

Figure 6-3 Original Images

Origina Image From Left Camera Original Image From Right Camera

OpenCV Reference Manual 3D Reconstruction 6

Figure 6-4 Correspondence Points

Rt oa
: }{L';.ﬁl

{ [

Correspondence Points on Left Image Correspondence Points on Right Image

Figure 6-5 Scan Lines

Some Scanlines on Left limage Some Scanlines on Right Image

OpenCV Reference Manual 3D Reconstruction 6

Figure 6-6 Moire in Morphed Image

Figure 6-7 Resulting Morphed Image

Morphed Image From Virtual Camera With Deleted Moire

Using Functions for View Morphing Algorithm

1. Find the fundamental matrix using the correspondence pointsin the two
images of cameras by calling the function Fi ndFundanent al Matri x.

2. Find the number of scanlinesin the images for the given fundamental matrix
by calling the function Fi ndFundanent al Mat ri x with null pointers to the
scanlines.

OpenCV Reference Manual 3D Reconstruction 6

3. Allocate enough memory for:
— scanlines in the first image, scanlinesin the second image, scanlinesin the
virtual image (for each numscan* 2* 4*si zeof (i nt));

— lengths of scanlinesin the first image, lengths of scanlinesin the second
image, lengths of scanlinesin the virtual image (for each
nunmscan* 2* 4*si zeof (i nt));
— buffer for the prewarp first image, the second image, the virtual image (for
each wi dt h*hei ght * 2*si zeof (i nt));
— datarunsfor the first image and the second image (for each
wi dt h* hei ght *4*si zeof (int));
— correspondence data for the first image and the second image (for each
wi dt h* hei ght *2*si zeof (i nt));
— numbersof linesfor the first and second images (for each
wi dt h* hei ght *4*si zeof (int)).
4. Find scanlines coordinates by calling the function Fi ndFundanent al Matri x.
5. Prewarp thefirst and second images using scanlines data by calling the
function PreWar pl nage.

6. Find runs on the first and second images scanlines by calling the function
Fi ndRuns.

7. Find correspondence information by calling the function
Dynani cCorrespondMul ti .

8. Find coordinates of scanlinesin the virtual image for the virtual camera
position al pha by calling the function MakeAl phaScanl i nes.

9. Morph the prewarp virtual image from the first and second images using
correspondence information by calling the function Mor phEpi | i nesMul tii .

10. Postwarp the virtual image by calling the function Post War pl nage.

11. Delete moire from the resulting virtual image by calling the function
Del et eMoi re.

POSIT
This section describes functions that together perform POSIT algorithm.

intel. 59

OpenCV Reference Manual 3D Reconstruction 6

The POSIT algorithm determines the six degree-of-freedom pose of a known tracked
3D rigid object. Given the projected image coordinates of uniquely identified points on
the object, the algorithm refines an initial pose estimate by iterating with a weak
perspective camera model to construct new image points; the algorithm terminates
when it reaches a converged image, the pose of which is the solution.

Geometric Image Formation

The link between world points and their corresponding image points is the projection
from world space to image space. Figure 6-8 depicts the perspective (or pinhole)
model, which is the most common projection model because of its generality and
usefulness.

The points in the world are projected onto the image plane according to their distance
from the center of projection. Using similar triangles, the relationship between the
coordinates of an image point p, = (x;,y;)anditsworld point P, = (X;,Y;,z,) canbe
determined as

X; = Zf_ixi VY = Zf_iYi . (61)

Figure 6-8 Perspective Geometry Projection

Center of
Projection

@
f) Pi:(xiinyzi)

Optical Axis

Image Plane

6-10

OpenCV Reference Manual 3D Reconstruction 6

The weak-perspective projection model simplifiesthe projection equation by replacing
all z; with arepresentative z sothat s = f /z isaconstant scale for all points. The
proj ection equations are then

X; =sX ,y; =sY;. (6.2)

Because this situation can be modelled as an orthographic projection (x; = X ,
y; =Y;) followed by isotropic scaling, weak-perspective projection is sometimes
called scaled orthographic projection. Weak-perspective is a valid assumption only
when the distances between any z; are much smaller than the distance between the z,
and the center of projection; in other words, the world points are clustered and far
enough from the camera. z can be set either to any z; or to the average computed over

al z .

More detailed explanations of this material can be found in [Trucco98].

Pose Approximation Method

Using weak-perspective projection, a method for determining approximate pose,
termed Pose from Orthography and Scaling (POS) in [DeM enthon92], can be derived.
First, areference point P, inthe worldis chosen from which all other world points can
be described as vectors: P = P, -P, (see Figure 6-9).

6-11

OpenCV Reference Manual 3D Reconstruction 6

Figure 6-9 Scaling of Vectors in Weak-Perspective Projection

R
of
’/ Py P,
Center of _
Projection Image Object

Similarly, the projection of this point, namely p,, isareference point for the image
points: p, = p; —p,- Asfollowsfrom the weak-perspective assumption, the x
component of p, isascaled-down form of thex component of P; :

X; =Xg = S(X; =Xg) = s(Py-T). (6.3)

Thisisalso true for their y components. If 1 and J are defined as scaled-up versions
of the unit vectorsi andj (1 =si andJ =sj), then
X, —Xo =P, -1 andy, -y, =P -J (6.4)

astwo equations for each point for which 1 and J are unknown. These equations,
collected over all the points, can be put into matrix form as

x=M andy = M, (6.5)

where x and y arevectorsof x andy componentsof p, respectively, and M isamatrix
whose rows are the P, vectors. These two sets of equations can be further joined to
construct asingle set of linear equations:

[x yl=MI Jl=p C=MI J], (6.6)

6-12

OpenCV Reference Manual 3D Reconstruction 6

where p. isamatrix whose rows are p; . Thelatter equation is an overconstrained
system of linear equations that can be solved for 1 and J in aleast-squares sense as

[J1=Mp,, (6.7)
where M is the pseudo-inverse of M.

Now that we have 1 and J, we construct the pose estimate asfollows. First, i and |
areestimated as | and J normalized, that is, scaled to unit length. By construction,
these are the first two rows of the rotation matrix, and their cross-product is the third
row:

R = ~T : (68)
(T i)'
The average of the magnitudesof 1 and J isan estimate of the weak-perspective scale

s . From the weak-perspective equations, the world point P, in camera coordinatesis
the image point p, in camera coordinates scaled by s:

Py = Po/s = [Xg Yo f1/s, (69)

which is precisely the translation vector being sought.

Algorithm

The POSIT algorithm wasfirst presented in the paper by DeMenthon and Davis
[DeMenthon92]. In this paper, the authors first describe their POS (Pose from
Orthography and Scaling) algorithm. By approximating perspective projection with
weak-perspective projection POS produces a pose estimate from a given image. POS
can be repeatedly used by constructing a new weak perspective image from each pose
estimate and feeding it into the next iteration. The calcul ated images are estimates of
theinitial perspective image with successively smaller amounts of “perspective
distortion” so that the final image contains no such distortion. The authors term this
iterative use of POS as POSIT (POS with I Terations).

POSIT requires three pieces of known information:

6-13

OpenCV Reference Manual 3D Reconstruction 6

* Theobject model, consisting of N points, each with unique 3D coordinates. N must
be greater than 3, and the points must be non-degenerate (non-coplanar) to avoid
algorithmic difficulties. Better results are achieved by using more points and by
choosing points as far from coplanarity as possible. The object model isan N x 3
matrix.

* Theobject image, which isthe set of 2D points resulting from a camera projection
of the model points onto an image plane; it is afunction of the object current pose.
The object imageisan N x 2 matrix.

* The cameraintrinsic parameters, namely, the focal length of the camera.

Given the object model and the object image, the algorithm proceeds as fol lows:

1. The object imageis assumed to be a weak perspective image of the object,
from which a least-sguares pose approximation is cal culated via the object
model pseudoinverse.

2. From this approximate pose the object model is projected onto the image plane
to construct a new weak perspective image.

3. From thisimage a new approximate pose is found using least-squares, which
in turn determines another weak perspective image, and so on.

For well-behaved inputs, this procedure converges to an unchanging weak perspective
image, whose corresponding pose is the final calcul ated object pose.

Example 6-1 POSIT Algorithm in Pseudo-Code

POSI T (i magePoi nts, objectPoints, focal Length) {
count = converged = O;
nodel Vect ors = nodel Poi nts — nodel Poi nt s(0);

ol dweakl magePoi nt s = i magePoi nt s;
whil e (!converged) {
if (count == 0)
i mgeVectors = i magePoi nts — i magePoi nt s(0);
el se {
weakl magePoi nts = i nagePoints .*

((1 + nodel Vectors*row3/translation(3)) * [1
1]);
i mgeDi fference = sum(sunm(abs(round(weakl nagePoi nts) -

r ound(ol dWeakl magePoi nts))));
ol dWweakl magePoi nt s = weakl magePoi nt s;
i mgeVect ors = weakl magePoi nts — weakl magePoi nts(0);

[1 J] = pseudoi nverse(nodel Vectors) * inmageVectors;

L}
intel.

OpenCV Reference Manual 3D Reconstruction 6

Example 6-1 POSIT Algorithm in Pseudo-Code (continued)

rowl =1 / norn(l);
row2 = J / norm(J);
rowd = crossproduct (rowl, row?2);

rotation = [rowl; row2; row3];

scale = (norm(l) + norm(J)) [/ 2;

translation = [imagePoi nts(1,1); inmagePoints(1,2); focal Length] /
scal e;

converged = (count > 0) && (diff < 1);

count = count + 1;

return {rotation, translation};

Asthefirst step assumes, the object image is aweak perspective image of the object. It
isavalid assumption only for an object that is far enough from the camera so that
“perspective distortions” are insignificant. For such objects the correct pose is
recovered immediately and convergence occurs at the second iteration. For lessideal
situations, the pose is quickly recovered after several iterations. However, convergence
is not guaranteed when perspective distortions are significant, for example, when an
object is close to the camera with pronounced foreshortening. DeMenthon and Davis
state that “ convergence seems to be guaranteed if the image features are at a distance
from the image center shorter than the focal length.”[DeM enthon92] Fortunately, this
occurs for most realistic camera and object configurations.

Gesture Recognition

This section describes specific functions for the static gesture recognition technol ogy.

The gesture recognition algorithm can be divided into four main components as
illustrated in Figure 6-10.

The first component computes the 3D arm pose from range image data that may be
obtained from the standard stereo correspondence algorithm. The process includes 3D
line fitting, finding the arm position along the line and creating the arm mask image.

6-15

OpenCV Reference Manual 3D Reconstruction 6

Figure 6-10 Gesture Recognition Algorithm

|r1"9"r’“fr

The second component produces a frontal view of the arm image and arm mask
through a planar homograph transformation. The process consists of the homograph
matrix calculation and warping image and image mask (See Figure 6-11).

u
intel. 616

OpenCV Reference Manual 3D Reconstruction 6

Figure 6-11 Arm Location and Image Warping

The third component segments the arm from the background based on the probability
density estimate that a pixel with a given hue and saturation value belongs to the arm.
For this 2D image histogram, image mask histogram, and probability density
histogram are calcul ated. Following that, initial estimateisiteratively refined using the
maximum likelihood approach and morphology operations (See Figure 6-12)

6-17

OpenCV Reference Manual 3D Reconstruction 6

Figure 6-12 Arm Segmentation by Probability Density Estimation

The fourth step is the recognition step when normalized central moments or seven Hu
moments are calculated using the resulting image mask. These invariants are used to
match masks by the M ahalanobis distance metric cal culation.

The functions operate with specific data of several types. Range image datais a set of
3D pointsin the world coordinate system calcul ated via the stereo correspondence
algorithm. The second data type is a set of the original image indices of this set of 3D
points, that is, projections on the image plane. The functions of this group

* enablethe user to locate the arm region in a set of 3D points (the functions
Fi ndHandRegi on and Fi ndHandRegi onA),

* create an image mask from a subset of 3D points and associated subset indices
around the arm center (the function Cr eat eHandMask),

* calculate the homography matrix for theinitial image transformation from the
image plane to the plane defined by the frontal arm plane (the function
Cal cl mageHonogr aphy),

* calculate the probability density histogram for the arm location (the function
Cal cProbDensi ty).

u
intel. 618

Basic Sructures and
Operations

Image Functions
This section describes basic functions for manipulating raster images.

OpenCYV library represents imagesin the format 1 pl | mage that comes from Intel®
Image Processing Library (IPL). IPL reference manual gives detailed information
about the format, but, for completeness, it is also briefly described here.

Example 7-1 | pl | mage Structure Definition

t ypedef struct _Ipllmge {
int nSize; /* size of ipllmge struct */
int 1D /* inmage header version */
i nt nChannel s;
i nt al phaChannel ;
int depth; /* pixel depth in bits */
char col or Model [4] ;
char channel Seq[4] ;
i nt dataCOrder;
int origin;
int align; /* 4- or 8-byte align */
i nt width;
i nt hei ght;
struct _IplRO *roi; /* pointer to RO if any */
struct _Ipllnmge *maskRO ; /*pointer to mask RO if any */
void *imageld; /* use of the application */
struct _IplTilelnfo *tilelnfo; /* contains information on tiling
*
/
int imageSi ze; /* useful size in bytes */
char *imageData; /* pointer to aligned i nage */
int widthStep; /* size of aligned line in bytes */
i nt BorderMbde[4]; /* the top, bottom |eft,
and right border node */
int BorderConst[4]; /* constants for the top, bottom
| eft, and right border */
char *imageDataOrigin; /* ptr to full, nonaligned i mage */
} Ipllmage;

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations 7

Only afew of the most important fields of the structure are described here. The fields
wi dt h and hei ght contain image width and height in pixels, respectively. The field
dept h contains information about the type of pixel values.

All possible values of thefield dept h listed ini pl . h header file include:
| PL_DEPTH_8U - unsigned 8-bit integer value (unsigned char),
| PL_DEPTH_8S - signed 8-bit integer value (signed char or smply char),
| PL_DEPTH_16S - signed 16-bit integer value (short i nt),
| PL_DEPTH_32S - signed 32-bit integer value (i nt),
| PL_DEPTH_32F - 32-bit floating-point single-precision value (f | oat).

In the above list the corresponding typesin C are placed in parentheses. The parameter
nChannel s meansthe number of color planesin theimage. Grayscaleimages contain a
single channel, while color images usually include three or four channels. The
parameter ori gi n indicates, whether the top image row (ori gi n ==1PL_ORI G N_TL)
or bottom image row (ori gi n ==1PL_ORI G N_BL) goes first in memory. Windows
bitmaps are usually bottom-origin, while in most of other environmentsimages are
top-origin. The parameter dat aOr der indicates, whether the color planesin the color
image are interleaved (dat aOr der == PL_DATA_ORDER_PI XEL) Or separate

(dat aOr der == 1 PL_DATA_ORDER_PLANE). The parameter wi dt hSt ep contains the
number of bytes between points in the same column and successive rows. The
parameter wi dt h isnot sufficient to calculate the distance, because each row may be
aligned with a certain number of bytes to achieve faster processing of the image, so
there can be some gaps between the end of i th row and the start of (i +1) th row. The
parameter i mageDat a contains pointer to the first row of image data. If there are
several separate planes in the image (when dat aOr der == 1 PL_DATA_ORDER_PLANE),
they are placed consecutively as separate images with hei ght * nChannel s rowstotal.

7-2

OpenCV Reference Manual Basic Sructures and Operations 7

It is possible to select some rectangular part of the image or a certain color planeinthe
image, or both, and process only this part. The selected rectangle is called "Region of
Interest” or ROI. The structure | pl | mage containsthefield r oi for this purpose. If the
pointer not NULL, it points to the structure | pl RO that contains parameters of selected
ROI, otherwise awhole image is considered sel ected.

Example 7-2 | pl RO Structure Definition

typedef struct _IplRO
n

int coi; /* channel of interest or CO */
int xOfset;
int yOfset;
int width;
int height;
} IplRO;

Ascan beseen, | pl RO includes ROI origin and size as well as COI (“Channel of
Interest”) specification. Thefield coi , equal to 0, meansthat all theimage channelsare
selected, otherwise it specifies an index of the selected image plane.

Unlike IPL, OpenCV has several limitations in support of | pl | mage:

— Each function supports only afew certain depths and/or number of channels.
For example, image statistics functions support only single-channel or
three-channel images of the depth | PL_DEPTH_8U, | PL_DEPTH_8S or
| PL_DEPTH_32F. The exact information about supported image formatsis
usually contained in the description of parameters or in the beginning of the
chapter if all the functions described in the chapter are similar. It is quite
different from IPL that tries to support all possible image formatsin each
function.

— OpenCV supports only interleaved images, not planar ones.

— Thefieldscol or Model , channel Seq, Bor der Mode, and Bor der Const are
ignored.

— Thefieldal i gn isignored and wi dt hSt ep is sSimply used instead of
recalculating it using the fieldswi dt h and al i gn.

— ThefiddsmaskRO andti | el nf o must be zero.

— COl support isvery limited. Now only image statistics functions accept
non-zero COIl values. Use the functions Cvt Pi xToPl ane and Cvt Pl aneToPi x
as awork-around.

7-3

OpenCV Reference Manual Basic Sructures and Operations 7

— ROIsof all the input/output images have to match exactly one another. For
example, input and output images of the function Er ode must have ROIs with
equal sizes. It isunlike IPL again, where the ROIs intersection is actually
affected.

Despite al the limitations, OpenCV still supports most of the commonly used image
formats that can be supported by | pl | rage and, thus, can be successfully used with
IPL on common subset of possiblel pl | mage formats.

The functions described in this chapter are mainly short-cuts for operations of creating,
destroying, and other common operations on | pl | mage, and they are often
implemented as wrappers for original 1PL functions.

Dynamic Data Structures

This chapter describes several resizable data structures and basic functions that are
designed to operate on these structures.

Memory Storage

Memory storages provide the space for storing all the dynamic data structures
described in this chapter. A storage consists of a header and a double-linked list of
memory blocks. Thislist istreated as a stack, that is, the storage header contains a
pointer to the block that is not occupied entirely and an integer val ue, the number of
free bytesin this block. When the free space in the block has run out, the pointer is
moved to the next block, if any, otherwise, a new block is allocated and then added to
the list of blocks. All the blocks are of the same size and, therefore, this technique
ensures an accurate memory allocation and helps avoid memory fragmentation if the
blocks are large enough (see Figure 7-1).

7-4

OpenCV Reference Manual Basic Sructures and Operations 7

Figure 7-1 Memory Storage Organization

Storage Header

BOTTOM

TOP

Free Space

—
Memory Blocks

Sequences

A sequenceisaresizable array of arbitrary type elements located in the memory
storage. The sequence is discontinuous. Sequence data may be partitioned into several
continuous blocks, called sequence blocks, that can be located in different memory
blocks. Sequence blocks are connected into a circular double-linked list to store large
sequences in severa memory blocks or keep several small sequencesin asingle
memory block. For example, such organization is suitable for storing contours. The
sequence implementation provides fast functions for adding/removing elements
to/from the head and tail of the sequence, so that the sequence implements a deque.
The functions for inserting/removing elementsin the middle of a sequence are also
available but they are slower. The sequence is the basic type for many other dynamic
data structuresin the library, e.g., sets, graphs, and contours; just like all these types,
the sequence never returns the occupied memory to the storage. However, the
sequence keeps track of the memory released after removing elements from the

7-5

OpenCV Reference Manual Basic Sructures and Operations 7

sequence; this memory is used repeatedly. To return the memory to the storage, the
user may clear awhole storage, or use savelrestoring position functions, or keep
temporary datain child storages.

Figure 7-2 Sequence Structure

Storage Header

(Links Between Blocks.
1

~Z= ~ \

Sequence Header and, probably, Sequéﬁ&é E:Io\cks.
the First Sequence Block.

Writing and Reading Sequences

Although the functions and macros described below are irrelevant in theory because
functions like SeqPush and Cet SeqEl emenable the user to write to sequences and
read from them, the writing/reading functions and macros are very useful in practice
because of their speed.

The following problem could provide an illustrative example. If the task is to create a
function that forms a sequence from N random values, the PUSH version runs as
follows:

CvSeq* create_seql(CvStorage* storage, int N) {

CvSeq* seq = cvCreateSeq(0, sizeof(*seq), sizeof(int), storage);
for(int i =0; i <N i++) {

int a = rand();

cvSeqPush(seq, &a);

}

return seq;

7-6

OpenCV Reference Manual Basic Sructures and Operations 7

}

The second version makes use of the fast writing scheme, that includes the following
steps: initialization of the writing process (creating writer), writing, closing the writer
(flush).

CvSeq* create_seql(CvStorage* storage, int N) {

CvSegWiter witer;

cvStartWiteSeq(0, sizeof(*seq), sizeof(int),

storage, &witer);

for(int i =0; i <N i++) {

int a = rand();

CV_WRI TE_SEQ ELEM a, witer);

}

return cvEndWiteSeq(&wmiter);

}

If N= 100000 and Pentium® I1l 500MHz is used, the first version takes 230
milliseconds and the second one takes 111 milliseconds to finish. These characteristics
assume that the storage aready contains a sufficient number of blocks so that no new
blocks are allocated. A comparison with the simple loop that does not use sequences
gives an idea as to how effective and efficient this approach is.

int* create_seq3(int* buffer, int N) {

for(i =0; i <N i++) {

buffer[i] = rand();

}

return buffer;
}
This function takes 104 milliseconds to finish using the same machine.

Generally, the sequences do not make a great impact on the performance and the
difference is very insignificant (less than 7% in the above example). However, the
advantage of sequencesis that the user can operate the input or output data even
without knowing their amount in advance. These structures enable him/her to allocate
memory iteratively. Another problem solution would be to use lists, yet the sequences
are much faster and require less memory.

7-7

OpenCV Reference Manual Basic Sructures and Operations 7

Sets

The set structure is mostly based on sequences but has atotally different purpose. For
example, the user is unable to use sequences for location of the dynamic structure
elements that have links between one another because if some elements have been
removed from the middle of the sequence, other sequence elements are moved to
another location and their addresses and indices change. In this case dl links haveto be
fixed anew. Another aspect of this problem isthat removing elements from the middle
of the sequenceis slow, with time complexity of O(n) , where n isthe number of
elements in the sequence.

The problem solution lies in making the structure sparse and unordered, that is,
whenever a structure element is removed, other elements must stay where they have
been, while the cell previously occupied by the element is added to the pool of three
cells, when anew element isinserted into the structure, the vacant cell is used to store
this new element. The set operates in thisway (See Example 7-3).

The set looks like a list yet keeps no links between the structure elements. However,
the user is free to make and keep such lists, if needed. The set isimplemented as a
sequence subclass; the set uses sequence elements as cells and organizes allist of free
cells.

7-8

OpenCV Reference Manual Basic Sructures and Operations 7

See Figure 7-3 for an example of a set. For simplicity, the figure does not show
division of the sequence/set into memory blocks and sequence blocks.

Figure 7-3 Set Structure

Existing Set Elements

List of Free Cells

/ ~ \ /
Set Header oy
Free Cells, Linked Together

The set elements, both existing and free cells, are all sequence elements. A special bit
indicates whether the set element exists or not: in the above diagram the bits marked
by 1 are free cells and the ones marked by O are occupied cells. The macro

CV_I S_SET_ELEM EXI STS(set _el em ptr) usesthisspecia bit to return a non-zero
value if the set element specified by the parameter set _el em pt r belongs to the set,
and 0 otherwise. Below follows the definition of the structure CvSet :

Example 7-3 CvSet Structure Definition

#defi ne CV_SET_FI ELDS() \
CV_SEQUENCE_FI ELDS() \
CvMenBl ock* free_el ens;

t ypedef struct CvSet
CV_SET_FI ELDS()

}

CvSet;

In other words, a set is a sequence plus alist of free cells.

OpenCV Reference Manual Basic Sructures and Operations 7

There are two modes of working with sets:
1. Usingindicesfor referencing the set elements within a sequence
2. Using pointers for the same purpose.

Whereas at times the first mode is a better option, the pointer mode is faster because it
does not need to find the set elements by their indices, which is done in the same way
asin simple sequences. The decision on which method should be used in each
particular case depends on:

* thetype of operations to be performed on the set and
* theway the operations on the set should be performed.

The ways in which anew set is created and new elements are added to the existing set
are the same in either mode, the only difference between the two being the way the
elements are removed from the set. The user may even use both methods of access
simultaneously, provided he or she has enough memory available to store both the
index and the pointer to each element.

Like in sequences, the user may create a set with elements of arbitrary type and specify
any size of the header subject to the following restrictions:

* size of the header may not be lessthan si zeof (CvSet).
* sizeof the set elements should be divisible by 4 and not less than 8 bytes.

The reason behind the latter restriction is the internal set organization: if the set hasa
free cell available, the first 4-byte field of this set element is used as a pointer to the
next free cell, which enables the user to keep track of all free cells. The second 4-byte
field of the cell contains the cell to be returned when the cell becomes occupied.

When the user removes a set element while operating in the index mode, the index of
the removed element is passed and stored in the released cell again. The bit indicating
whether the element belongs to the set isthe least significant bit of the first 4-byte
field. Thisisthe reason why all the elements must have their size divisible by 4. In this
case they are all aligned with the 4-byte boundary, so that the least significant bits of
their addresses are aways 0.

In free cells the corresponding bit is set to 1 and, in order to get the real address of the
next free cell, the functions mask this bit off. On the other hand, if the cell is occupied,
the corresponding bit must be equal to O, which is the second and last restriction: the

7-10

OpenCV Reference Manual Basic Sructures and Operations 7

least significant bit of the first 4-byte field of the set element must be 0, otherwise the
corresponding cell is considered free. If the set elements comply with this restriction,
e.g., if thefirst field of the set element is a pointer to another set element or to some
aligned structure outside the set, then the only restriction left is a non-zero number of
4- or 8-byte fields after the pointer. If the set elements do not comply with this
restriction, e.g., if the user wants to store integers in the set, the user may derive his or
her own structure from the structure CvSet EI emor includeit into hisor her structure as
the first field.

Example 7-4 CvSet El emStructure Definition

#define CV_SET_ELEM FI ELDS() \
int* aligned_ptr;
typedef struct _CvSetEl em

CV_SET_ELEM FI ELDS()
}
CvSet El em

Thefirst field isadummy field and is not used in the occupied cells, except the |east
significant bit, which is 0. With this structure the integer element could be defined as
follows:
typedef struct _IntSetEl em
{
CV_SET_ELEM FI ELDS()
int val ue;
}
I nt Set El em

Graphs

The structure set described above hel psto build graphs because a graph consists of two
sets, namely, vertices and edges, that refer to each other.

Example 7-5 CvGraph Structure Definition

#defi ne CV_GRAPH_FI ELDS() \
CV_SET_FI ELDS() \
CvSet * edges;

typedef struct _CvG aph

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations 7

Example 7-5 CvGraph Structure Definition (continued)

CV_GRAPH_FI ELDS()
}
ovGr aph;

In OOP terms, the graph structure is derived from the set of vertices and includes a set
of edges. Besides, special datatypes exist for graph vertices and graph edges.

Example 7-6 Definitions of CvGr aphEdge and CvG aphVt x Structures
#defi ne CV_GRAPH_EDGE_FI ELDS() \

struct _CvG aphEdge* next[2]; \
struct _CvG aphVertex* vtx[2];

#defi ne CV_GRAPH VERTEX FIELDS() \
struct _CvG& aphEdge* first;

typedef struct _CvG aphEdge
CV_GRAPH_EDGE_FI ELDS()

%,\/Gr aphEdge;

typedef struct _CvG aphVertex
CV_GRAPH_VERTEX_FI ELDS()

]E,\/Gr aphVt x;

The graph vertex has a single predefined field that assumes the value of 1 when
pointing to the first edge incident to the vertex, or O if the vertex isisolated. The edges
incident to avertex make up the single linked non-cycle list. The edge structureis
more complex: vt x[0] and vt x[1] arethe starting and ending vertices of the edge,
next[0] and next[1] arethe next edgesin the incident listsfor vt x[0] and vt x[1]

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations 7

respectively. In other words, each edge isincluded in two incident lists since any edge
isincident to both the starting and the ending vertices. For example, consider the
following oriented graph (see below for more information on non-oriented graphs).

Figure 7-4 Sample Graph

e

The structure can be created with the following code:
CvGraph* graph = cvCreateG aph(CV_SEQ Kl ND_GRAPH |
CV_GRAPH_FLAG ORI ENTED,

si zeof (CvGraph),

si zeof (CvGraphWt x) +4,

si zeof (CvGraphEdge),

st orage);

for(i =0; i <5; i++)

{

cvG aphAddvt x(graph, 0, 0);/* argunents like in
cvSet Add*/

}

cvG aphAddEdge(graph, 0, 1, 0, 0); /* connect vertices 0O

7-13

OpenCV Reference Manual Basic Sructures and Operations 7

and 1, other two arguments like in cvSetAdd */
cvG aphAddEdge(graph, 1, 2, 0, 0);
cvG aphAddEdge(graph, 2, 0, 0, 0);
cvG aphAddEdge(graph, 2, 3, 0, 0);

Theinternal structure comes to be as foll ows:

Figure 7-5 Internal Structure for Sample Graph Shown in Figure 7-4

Graph Vertices

Graph Edges

Undirected graphs can also be represented by the structure cvGr aph. If the
non-oriented edges are substituted for the oriented ones, the internal structure remains
the same. However, the function used to find edges succeeds only when it finds the
edgefrom 3 to 2, asthe function looks not only for edges from 3 to 2 but also from 2 to
3, and such an edge is present as well. Asfollows from the code, the type of the graph
is specified when the graph is created, and the user can change the behavior of the edge
searching function by specifying or omitting the flag cv_GRAPH_FLAG_ORI ENTED. TwO
edges connecting the same vertices in undirected graphs may never be created because
the existence of the edge between two verticesis checked before a new edgeisinserted

7-14

OpenCV Reference Manual Basic Sructures and Operations 7

between them. However, internally the edge can be coded from the first vertex to the
second or vice versa. Like in sets, the user may work with either indices or pointers.
The graph implementation uses only pointers to refer to edges, but the user can choose
indices or pointers for referencing vertices.

Matrix Operations

OpenCV introduces special datatype cvmat for storing real single-precision or
double-precision matrices. Operations supported include basic matrix arithmetics,
eigen problem solution, SVD, 3D geometry and recognition-specific functions. To
reduce time call overhead, the special data type Cviat Ar r ay, which is an array of
matrices, and support functions are aso introduced.

Drawing Primitives

This section describes simple drawing functions.

The functions described in this chapter are intended mainly to mark out recognized or
tracked features in the image. With tracking or recognition pipeline implemented it is
often necessary to represent results of the processing in the image. Despite the fact that
most Operating Systems have advanced graphic capabilities, they often require an
image, where one is going to draw, to be created by special system functions. For
example, under Win32 a graphic context (DC) must be created in order to use GDI
draw functions. Therefore, several simple functions for 2D vector graphic rendering
have been created. All of them are platform-independent and work with | pl | mage
structure. Now supported image formats include byte-depth images with dept h =

| PL_DEPTH_8UOr dept h =1 PL_DEPTH_8S. The images are either

* singlechannel, that is, grayscale or
* three channel, that is RGB or, more exactly, BGR as the blue channel goes first.

Several preliminary notes can be made that are relevant for each drawing function of
the library:

e All of thefunctionstakecol or parameter that means brightness for grayscale
images and RGB color for color images. In the latter case a value, passed to the
function, can be composed viaCv_RGB macro that is defined as:

7-15

OpenCV Reference Manual Basic Sructures and Operations 7

Utility

#define CV_RGB(r,g,b) ((((r)&255) << 16)]|(((9g)&255) << 8)|((b)&255)).

Any function in the group takes one or more points (CvPoi nt structure instance(s))
asinput parameters. Point coordinates are counted from top-left ROI corner for
top-origin images and from bottom-left ROI corner for bottom-origin images.

All the functions are divided into two classes - with or without antialiasing. For
several functions there exist antialiased versions that end with AA suffix. The
coordinates, passed to AA-functions, can be specified with sub-pixel accuracy, that
is, they can have several fractional bits, which number is passed viascal e
parameter. For example, if cvGi rcl eAA function is passed cent er =

cvPoi nt (34, 18) and scal e = 2, then the actual center coordinates are
(34/4.,19/4.)==(16.5,4.75).

Simple (that is, non-antialiased) functions havet hi ckness parameter that specifies
thickness of lines afigure is drawn with. For some functions the parameter may take
negative values. It causes the functions to draw afilled figure instead of drawing its
outline. To improve code readability one may use constant CV_FI LLED= -1 asa

t hi ckness value to draw filled figures.

Utility functions are unclassified OpenCV functions described in Reference.

7-16

Library Technical

Organization and System E

Functions

Error Handling
TBD

Memory Management
TBD

Interaction With Low-Level Optimized Functions
TBD

User DLL Creation
TBD

OpenCV Reference Manual Library Technical Organization and System Functions 8

intel. 82

OpenCV Reference Manual Library Technical Organization and System Functions 8

intel. 83

OpenCV Reference Manual Library Technical Organization and System Functions 8

intel.

Motion Analysis and Object

Tracking Reference

Table 9-1

Motion Analysis and Object Tracking Functions and Data Types

Motion Templates

Functions

Updat eMbti onHi story

Cal cMbt i onGr adi ent

Cal cd obal Orientation

Group Name Description
Functions

Background Subtraction Acc Adds a new image to

Functions the accumulating sum.

Squar eAcc Calculates square of the
source image and adds
it to the destination
image.

Mul tiplyAcc Calculates product of
two input images and
adds it to the destination
image.

Runni ngAvg Calculates weighted

sum of two images.

Updates the motion
history image by moving
the silhouette.

Calculates gradient
orientation of the motion
history image.

Calculates the general
motion direction in the
selected region.

9-1

OpenCV Reference Manual

Motion Analysis and Object Tracking Reference 9

Table 9-1

Motion Analysis and Object Tracking Functions and Data Types (continued)

Group

Name

Description

CamShift Functions

Active Contours Function

Optical Flow Functions

Estimators Functions

Segnent Mot i on

Cantshi ft

MeanShi ft

Snakel mage

Cal cOpti cal Fl owHS

Cal cOpti cal Fl owLK

Cal cOpti cal Fl owBM

Cal cOpti cal Fl owPyr LK

Cr eat eKal man

Rel easeKal nan

Kal manUpdat eByTi ne

Segments the whole
motion into separate
moving parts.

Finds an object center
using the MeanShift
algorithm, calculates the
object size and
orientation.

Iterates to find the object
center.

Changes contour
position to minimize its
energy.

Calculates optical flow
for two images
implementing Horn and
Schunk technique.

Calculates optical flow
for two images
implementing Lucas and
Kanade technique.

Calculates optical flow
for two images
implementing the Block
Matching algorithm.

Calculates optical flow
for two images using
iterative Lucas-Kanade
method in pyramids.

Allocates Kalman filter
structure.

Deallocates Kalman
filter structure.

Estimates the
subsequent stochastic
model state.

9-2

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

Table 9-1 Motion Analysis and Object Tracking Functions and Data Types (continued)

Group Name Description

Kal manUpdat eBy Measur enent Adjusts the stochastic
model state on the basis
of the true
measurements.

Cr eat eConDensati on Allocates a
ConDensation filter
structure.

Rel easeConDensati on Deallocates a
ConDensation filter
structure.

ConDensl ni t Sanpl eSet Initializes a sample set
for condensation
algorithm.

ConDensUpdat ebyTi ne Estimates the
subsequent model state
by its current state.

Data Types
Estimators Data Types CvKal man
CvConDensati on

Background Subtraction Functions

Acc
Adds frame to accumulator.

voi d cvAcc(Ipllmge* ing, |pllmge* sum |pllmge* mask=0);

i ng Input image.
sum Accumulating image.
mask Mask image.

intel. 03

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

Discussion

The function Acc adds anew imagei ng to the accumulating sum sum If mask isnot
NULL, it specifies what accumulator pixels are affected.

SquareAcc

Calculates sguare of source image and adds it to
destination image.

voi d cvSquar eAcc(| pllmage* ing, |pllmge* sqSum | pllmage* nmask=0);

i ng Input image.

sqSum Accumulating image.
mask Mask image.
Discussion

The function Squar eAcc adds the square of the new imagei ng to the accumulating
sum sqSumof the image squares. If mask isnot NULL, it specifies what accumul ator
pixels are affected.

MultiplyAcc

Calculates product of two input images and adds
it to destination image.

void cvMul tiplyAcc(|pllnmge* ingA, |Ipllnmge* i mgB, I|pllnmge* acc, |pllnmge*
mask=0) ;

i mA First input image.
i ngB Second input image.
acc Accumulating image.

intel.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

mask Mask image.

Discussion

The function Mul ti pl yAcc multipliesinput i ngA by i ngB and adds the result to the
accumulating sum acc of the image products. If mask isnot NULL, it specifies what
accumul ator pixels are affected.

RunningAvg

Calculates weighted sum of two images.

voi d cvRunni ngAvg(| pl I mage* i mgY, |pllmage* i mgU, doubl e al pha,
| pl I mage* nmask=0)

i ngY Input image.

i mgU Destination image.

al pha Weight of input image.
mask Mask image.
Discussion

The function Runni ngAvg calculates weighted sum of two images. Once a statistical
model is available, slow updating of the value is often required to account for slowly
changing lighting, etc. This can be done by using a simple adaptive filter:

e = oy +(1-o)ly _q,

where u (i ngU) isthe updated value, 0<a <1 isan averaging constant, typically set to
asmall value such as 0.05, andy (i mgY) is anew observation at timet . When the
function is applied to aframe sequence, the result is called the running average of the
sequence.

If mask isnot NULL, it specifies what accumulator pixels are affected.

9-5

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

Motion Templates Functions

UpdateMotionHistory

Updates motion history image by moving
silhouette.

voi d cvUpdat eMoti onHi story (Ipllmage* silhouette, |pllmage* mhi, double
ti mest anp, doubl e mhi Duration);

sil houette Silhouette image that has non-zero pixels where the motion occurs.
mhi Motion history image, both an input and output parameter.

ti mest anp Floating point current time in milliseconds.

mhi Duration ~ Maximal duration of motion track in milliseconds.

Discussion

The function Updat eMbt i onHi st ory updates the motion history image with a
silhouette, assigning the current t i nest anp value to those mhi pixelsthat have
corresponding non-zero silhouette pixels. The function also clears mhi pixels older
thanti mest anp — mhi Dur at i on if the corresponding silhouette values are 0.

CalcMotionGradient

Calculates gradient orientation of motion history
image.

voi d cvCal cMoti onGradi ent(| pllmage* mhi, |pllnage* mask, |pllnage*
ori entation, double naxTDelta, double minTDelta, int apertureSize=3);

mhi Motion history image.
mask Mask image; marks pixels where motion gradient data is correct.
Output parameter.

intel. o6

OpenCV Reference Manual

Motion Analysis and Object Tracking Reference 9

orientation

apertureSi ze

maxTDel t a

m nTDel t a

Discussion

M otion gradient orientation image; contains angles from 0 to ~360
degrees.

Size of aperture used to calcul ate derivatives. Value should be odd,
egd., 3,5, etc.

Upper threshold. The function considers the gradient orientation
valid if the difference between the maximum and minimum mhi
values within a pixel neighborhood is lower than this threshold.

L ower threshold. The function considers the gradient orientation
valid if the difference between the maximum and minimum mhi
values within a pixel neighborhood is greater than this threshold.

Thefunction Cal cMt i onGradi ent calculatesthe derivatives Dx and Dy for theimage
mhi and then calculates orientation of the gradient using the formula

_ |0, x=0y=0
¢ ar ctan(y/x)el se

Finally, the function masks off pixels with avery small (less than nmi nTDel t a) or very
large (greater than maxTDel t a) difference between the minimum and maximum mhi
values in their neighborhood. The neighborhood for determining the minimum and
maximum has the same size as aperture for derivative kernels - aper t ur eSi ze x
apertureSi ze pixels.

CalcGlobalOrientation

Calculates global motion orientation of some
selected region.

voi d cvCal cd obal Oientation(|pllnmge* orientation, |pllmge* mask, |pllnmage*
doubl e currTi mestanp, double mhiDuration);

mhi ,

intel.

9-7

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

orientation Motion gradient orientation image; calculated by the
function Cal cMot i onG adi ent .

mask Mask image. It isa conjunction of valid gradient mask,
calculated by the function Cal cMvot i onGr adi ent and mask
of the region, whose direction needs to be calcul ated.

mhi Motion history image.

cur r Ti nest anp Current time in milliseconds.

mhi Dur at i on Maximal duration of motion track in milliseconds.
Discussion

Thefunction Cal cG obal Ori ent ati on calculatesthe general motion direction in the
selected region.

At first the function builds the orientation histogram and finds the basic orientation as
a coordinate of the histogram maximum. After that the function calcul ates the shift
relative to the basic orientation as a weighted sum of al orientation vectors. the more
recent is the motion, the greater is the weight. The resultant angleis<basi c
orientation> + <shift>.

SegmentMotion

Segments whole motion into separate moving
parts.

voi d cvSegnent Motion(| pllmage* mhi, |pllnmge* segMask, CvMenttorage* storage,
CvSeqg** conponents, double timestanp, double segThresh);

mhi Motion history image.

segMask Image where the mask found should be stored.

St or age Pointer to the memory storage, where the sequence of components
should be saved.

conmponent s Sequence of components found by the function.

ti mest anp Floating point current time in milliseconds.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

segThresh Segmentation threshold; recommended to be equal to theinterval
between motion history “steps’ or greater.

Discussion

The function Segnent Mot i on finds all the motion segments, starting from
connected componentsin theimagemi that have value of the current timestamp. Each
of the resulting segmentsis marked with an individual value (1,2 ...).

The function stores information about each resulting motion segment in the structure
CvConnect edConp (See Example 10-1 in Image Analysis Reference). The function
returns a sequence of such structures.

CamShift Functions

CamShift

Finds object center, size, and orientation.

i nt cvCanshi ft(1pllmge*inmgProb, CvRect wi ndowi n, CvTernCriteriacriteria,
CvConnect edConp* out, CvBox2D* box=0);

i ngPr ob 2D object probability distribution.

wi ndowl n Initial search window.

criteria Criteria applied to determine when the window search should be
finished.

out Resultant structure that contains converged search window
coordinates (r ect field) and sum of all pixelsinside the window
(ar eafield).

box Circumscribed box for the object. If not NULL, contains object size

and orientation.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

Discussion

The function canshi ft finds an object center using the Mean Shift algorithm and,
after that, cal culates the object size and orientation. The function returns number of
iterations made within the Mean Shift algorithm.

MeanShift

Iterates to find object center.

int cvMeanShift(Ipllnmage* i ngProb, CvRect w ndowln, CvTernCriteria
criteria, CvConnectedConp* out);

i mgProb 2D object probability distribution.

wi ndowl n Initial search window.

criteria Criteria applied to determine when the window search should be
finished.

out Resultant structure that contains converged search window
coordinates (r ect field) and sum of all pixelsinside the window
(ar eafield).

Discussion

The function Meanshi ft iterates to find the object center given its 2D color
probability distribution image. The iterations are made until the search window center
moves by less than the given value and/or until the function has done the maximum
number of iterations. The function returns the number of iterations made.

u
intel. 010

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

Active Contours Function

Snakelmage
Changes contour position to minimize its energy.

voi d cvSnakel mage(| pllmage* inmage, CvPoint* points, int |ength,
float* alpha, float* beta, float* gamma, int coeffUsage, CvSize w n,
CvTernCriteria criteria, int calcGadient=1);

i mge Pointer to the source image.
points Points of the contour.

| engt h Number of pointsin the contour.
al pha Weight of continuity energy.

bet a Weight of curvature energy.
gamma Weight of image energy.

coef f Usage Variant of usage of the previous three parameters:

®* CV_VALUEIindicatesthat each of al pha, bet a, ganma iS a pointer
to asingle value to be used for al points;

®* CV_ARRAYindicatesthat each of al pha, bet a, ganma iS a pointer
to an array of coefficients different for all the points of the snake.
All the arrays must have the size equal to the snake size.

wi n Size of neighborhood of every point used to search the minimum;
must be odd.
criteria Termination criteria.

cal cGradient Gradient flag. If not O, the function counts source image gradient
magnitude as external energy, otherwise the image intensity is
considered.

Discussion

Thefunction Snakel mage usesimage intensity asimage energy.

u
intel. 011

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

The parameter criteria. epsi | on isused to define the minimal number of points that
must be moved during any iteration to keep the iteration process running.

If the number of moved pointsislessthancriteria. epsilon orthefunction
performedcriteria. maxlter iterations, the function terminates.

Optical Flow Functions

CalcOpticalFlowHS

Calculates optical flow for two images.

voi d cvCal cOptical Fl owHS(| pl | mage* ingA, |pllnmge* ingB, int usePrevious,
I pl I mage* vel x, |pllmge* vely, double |anbda, CvTernCriteria criteria);

i A First image.

i ngB Second image.

usePrevious Usesprevious (input) velocity field.

vel x Horizontal component of the optical flow.
vel y Vertical component of the optical flow.

| ambda Lagrangian multiplier.

criteria Criteria of termination of velocity computing.
Discussion

The function Cal cOpt i cal FI owHS computes flow for every pixel, thus output images
must have the same size as the input. Horn & Schunck Technigue is implemented.

u
intel. 012

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

CalcOpticalFlowLK

Calculates optical flow for two images.

voi d cvCal cOptical Fl owLK(| pl I mage* inmgA, |pllmage* ingB, CvSize wi nSize,
I pl I mage* vel x, |pllmge* vely);

i A First image.

i ngB Second image.

Wi nSi ze Size of the averaging window used for grouping pixels.
vel x Horizontal component of the optical flow.

vel y Vertical component of the optical flow.

Discussion

The function Cal cOpt i cal FI owL,K computes flow for every pixel, thus output images
must have the same size as input. Lucas & Kanade Technigue isimplemented.

CalcOpticalFlowBM

Calculates optical flow for two images by block
matching method.

voi d cvCal cOptical Fl owBM | pl | mage* imgA, |pllmge* ingB, CvSi ze bl ockSi ze,
CvSi ze shiftSize, CvSize maxRange, int usePrevious, Ipllmge* velx,
I pl | mage* vely);

i A First image.

i ngB Second image.

bl ockSi ze Size of basic blocks that are compared.

shiftSize Block coordinate increments.

maxRange Size of the scanned neighborhood in pixels around block.

u
intel. 013

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

usePrevious Usesprevious (input) velocity field.

vel x Horizontal component of the optical flow.
vel y Vertical component of the optical flow.
Discussion

The function Cal cOpti cal Fl owBM calculates optical flow for two images using the
Block Matching agorithm. Velocity is computed for every block, but not for every
pixel, so velocity image pixels correspond to input image blocks and the vel ocity
image must have the following size:

i mgeSi ze.wi dt h}

vel oci tyFrameSi ze.wi dth = [bl ockS ze Wi dih

i mgeSi ze.hei ght}

vel oci tyFrameSi ze.hei ght = [bl ockSi ze.hei ght)’

CalcOpticalFlowPyrLK

Calculates optical flow for two images using
iterative Lucas-Kanade method in pyramids.

voi d cvCal cOpti cal Fl owPyr LK(I pl I mage* i ngA, |pllmage* inmgB, |pllmage* pyrA

I pll

mage* pyrB, CvPoi nt2D32f* featuresA, CvPoint2D32f* featuresB, int

count, CvSize winSize, int level, char* status, float* error,
CvTernCriteria criteria, int flags);

i mgA First frame, at timet.
i mB Second frame, at time t +dt .
pyrA Buffer for the pyramid for the first frame. If the pointer is not NULL,

the buffer must have a sufficient size to store the pyramid from
l evel 1tolevel #<level>;thetota sizeof
(i mgSi ze. wi dt h+8) *i ngSi ze. hei ght/ 3 bytesis sufficient.

pyr B Similar to pyr A, applies to the second frame.
f eat ur esA Array of points for which the flow needs to be found.
featuresB Array of 2D points containing calculated new positions of input

features in the second image.

9-14

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

count Number of feature points.
wi nSi ze Size of the search window of each pyramid level.
| evel Maximal pyramid level number. If 0, pyramids are not used (single
level), if 1, two levels are used, etc.
st atus Array. Every element of the array isset to 1 if the flow for the
corresponding feature has been found, 0 otherwise.
error Array of double numbers containing difference between patches
around the original and moved points. Optiona parameter; can be
NULL.
criteria Specifies when the iteration process of finding the flow for each
point on each pyramid level should be stopped.
flags Miscel laneous flags:
® CV_LKFLOW PYR_A_READY, pyramid for thefirst frameis
precalculated before the call;
®* CV_LKFLOW PYR_B_READY, pyramid for the second frame s
precalculated before the call;

® CV_LKFLOW.I NI TI AL_GUESSES, array B containsinitial
coordinates of features before the function call.

Discussion

Thefunction Cal cOpti cal Fl owPyr LK calculates the optical flow between two images
for the given set of points. The function finds the flow with sub-pixel accuracy.

Both parameterspyr A and pyr B comply with the following rules: if theimage pointer
iso, the function alocates the buffer internally, calcul ates the pyramid, and rel eases
the buffer after processing. Otherwise, the function calcul ates the pyramid and storesit
in the buffer unless the flag Cv_LKFLOW PYR_A[B] _READY is set. The image should be
large enough to fit the Gaussian pyramid data. After the function call both pyramids
are calculated and the ready flag for the corresponding image can be set in the next
call.

u
intel. 015

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

Estimators Functions

CreateKalman
Allocates Kalman filter structure.

CvKal man* cvCreat eKal man(int DynanParans, int MeasureParans);

DynanPar ans Dimension of the state vector.
Measur ePar anms Dimension of the measurement vector.

Discussion

The function Cr eat eKal man creates CvKal nman structure and returns pointer to the
structure.

ReleaseKalman
Deallocates Kalman filter structure.

voi d cvRel easeKal man(CvKal man** Kal man) ;

Kal man Double pointer to the structure to be released.

Discussion

The function Rel easeKal man releases the structure Cvkal man (see Example 9-1) and
frees the memory previoudly allocated for the structure.

9-16

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

KalmanUpdateByTime
Estimates subsequent model state.

voi d cvKal manUpdat eByTi ne (CvKal man* Kal man);
Kal man Pointer to the structure to be updated.

Discussion

The function Kal manUpdat eBy Ti ne estimates the subsequent stochastic model state
by its current state.

KalmanUpdateByMeasurement
Adjusts model state.

voi d cvKal manUpdat eByMeasur ement (CvKal man* Kal man, CvMat * Measur enment) ;
Kal man Pointer to the structure to be updated.
Measur ement Pointer to the structure cvmvat containing the measurement vector.

Discussion

The function Kal manUpdat eByMeasur ement adjusts stochastic model state on the
basis of the true measurements of the model state.

CreateConDensation
Allocates ConDensation filter structure.

CvConDensati on* cvCreat eConDensati on(int DynamParans, int MeasureParams, int
Sanpl esNum ;

L}
intel.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

DynanPar ans Dimension of the state vector.
Measur ePar anms Dimension of the measurement vector.
Sanpl esNum Number of samples.

Discussion

The function Cr eat eConDensat i on creates cvConDensat i on (See Example 9-2)
structure and returns pointer to the structure.

ReleaseConDensation
Deallocates ConDensation filter structure.

voi d cvRel easeConDensat i on(CvConDensati on** ConDens);
ConDens Pointer to the pointer to the structure to be released.

Discussion

The function Rel easeConDensat i on releasesthe structure CvConDensat i on (See
Example 9-2) and frees all memory previously allocated for the structure.

ConDensInitSampleSet
Initializes sample set for condensation algorithm.

voi d cvConDensl ni t Sanpl eSet (CvConDensat i on* ConDens, CvMat* | ower Bound CvMat *
upper Bound) ;

ConDens Pointer to a structure to be initialized.
| ower Bound Vector of the lower boundary for each dimension.
upper Bound Vector of the upper boundary for each dimension.

u
intel. 018

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

Discussion

The function ConDensl ni t Sanpl eSet fillsthe samples arrays in the structure
CvConDensat i on (see Example 9-2) with values within specified ranges.

ConDensUpdatebyTime
Estimates subsequent model state.

voi d cvConDensUpdat eByTi me(CvConDensat i on* ConDens) ;
ConDens Pointer to the structure to be updated.

Discussion
The function ConDensUpdat eByTi me estimates the subsequent stochastic model
state from its current state.

Estimators Data Types

Example 9-1 CvKal man

t ypedef struct CvKal man

{

int M // D mensi on of neasurenent vector

int DP; // Dinmension of state vector

fl oat* PosterState; /1 Vector of State of the Systemin k-th step
float* PriorState,; /'l Vector of State of the Systemin (k-1)-th step
fl oat* Dynamvatr; /1 Matrix of the linear Dynanics system
float* Measurenent Matr; /1 Matrix of |inear neasurenent

fl oat* MNCovari ance; /!l Matrix of neasurenent noice covariance
fl oat* PNCovari ance; /1 Matrix of process noice covariance
float* Kal nzai nivatr; /] Kalman Gain Matrix

float* PriorErrorCovari ance; //Prior Error Covariance nmatrix

float* PosterErrorCovariance;//Poster Error Covariance matri X

float* Tenpl; /'l Tenporary Matrixes

float* Tenp2;

} CvKal man;

u
intel. 019

OpenCV Reference Manual

Motion Analysis and Object Tracking Reference 9

Example 9-2 CvConDensati on

typedef struct

measur ement vect or
Matrix of the linear Dynanmi cs system

Nunmber of the Sanples

array of the Sample Vectors
tenporary array of the Sanple Vectors
Confi dence for each Sanple

Cunul ati ve confidence

Tenporary vector

RandomVector to update sanple set

{

int M // D mensi on of

int DP; // Dinmension of state vector
float* Dynamvatr; /1

float* State; // Vector of State
i nt Sanpl esNum /1

float** fl Sanpl es; Il
float** fl NewSanpl es; /1

float* fl Confidence; I

float* fl Curul ati ve; I

float* Tenp; /1

fl oat* RandonSanpl e; I
CvRandSt at e* RandS; // Ar

} CvConDensat i on;

ray of structures to generate random vectors

9-20

lmage Analysis Reference

Table 10-1 Image Analysis Reference

Group Name Description
Functions
Contour Retrieving Fi ndCont our s Finds contours in a binary
Functions image.
Start Fi ndCont ours Initializes contour
scanning process.
Fi ndNext Cont our Finds the next contour on
the raster.
Substi t ut eCont our Replaces the retrieved
contour.
EndFi ndCont our s Finishes scanning
process.
Features Functions Lapl ace Calculates convolution of

the input image with
Laplacian operator.

Sobel Calculates convolution of
the inputimage with Sobel
operator.

Canny Implements Canny
algorithm for edge
detection.

Pr eCor ner Det ect Calculates two constraint
images for corner
detection.

u
intgl. 1041

OpenCV Reference Manual

Image Analysis Reference 10

Table 10-1 Image Analysis Reference (continued)

Group

Name

Description

Image Statistics

Functions

Cor ner Ei genVal sAndVecs

Cor ner M nEi genVal

Fi ndCor ner SubPi x
CGoodFeat uresToTr ack

HoughLi nes

HoughLi nesSDi v

HoughLi nesP

Count NonZer o
SunPi xel s

Mean

Mean St dDev

M nMaxLoc

Nor m

Calculates eigenvalues
and eigenvectors of image
blocks for corner
detection.

Calculates minimal
eigenvalues of image
blocks for corner
detection.

Refines corner locations.

Determines strong
corners on the image.

Finds lines in a binary
image, SHT algorithm.

Finds lines in a binary
image, MHT algorithm.

Finds line segments in a
binary image, PPHT
algorithm.

Counts non-zero pixels in
an image.

Summarizes pixel values
in an image.

Calculates mean value in
an image region.

Calculates mean and
standard deviation in an
image region.

Finds global minimum and
maximum in an image
region.

Calculates image norm,
difference norm or relative
difference norm

10-2

OpenCV Reference Manual

Image Analysis Reference 10

Table 10-1

Image Analysis Reference (continued)

Group

Name

Description

Pyramid Functions

Morphology Functions

Moment s

Cet Spat i al Monent

Cet Cent r al Monent

Cet Nor mal i zedCent r al Monment

Get HuMbrrent s

Pyr Down

Pyr Up
Pyr Segnent ati on

Creat eStruct uri ngEl enent Ex

Rel easeSt ruct uri ngEl enent

Er ode
Dil ate
Mor phol ogy Ex

Calculates all moments up
to the third order of the
image plane and fills the
moment state structure.

Retrieves spatial moment
from the moment state
structure.

Retrieves the central
moment from the moment
state structure.

Retrieves the normalized
central moment from the
moment state structure.

Calculates seven Hu
moment invariants from
the moment state
structure.

Downsamples an image.
Upsamples an image.

Implements image
segmentation by
pyramids.

Creates a structuring
element.

Deletes the structuring
element.

Erodes the image by
using an arbitrary
structuring element.

Dilates the image by using
an arbitrary structuring
element.

Performs advanced
morphological
transformations.

10-3

OpenCV Reference Manual

Image Analysis Reference 10

Table 10-1

Image Analysis Reference (continued)

Group

Name

Description

Distance Transform
Function

Threshold Functions

Flood Filling Function

Histogram Functions

Di st Transform

Adapti veThreshol d

Threshol d
Fl oodFi | |

Cr eat eHi st
Rel easeH st

MakeHi st Header For Arr ay

QueryHi st Val ue_1D

QueryHi st Val ue_2D

Quer yHi st Val ue_3D

Quer yHi st Val ue_nD

Cet H st Val ue 1D

Cet H st Val ue 2D

Cet H st Val ue 3D

Cet H st Val ue nD

Calculates distance to the
closest zero pixel for all
non-zero pixels of the
source image.

Provides an adaptive
thresholding binary
image.

Thresholds the binary
image.

Makes flood filling of the
image connected domain.
Creates a histogram.

Releases the histogram
header and the underlying
data.

Initializes the histogram
header.

Queries the value of a 1D
histogram bin.

Queries the value of a 2D
histogram bin

Queries the value of a 3D
histogram bin

Queries the value of an
nD histogram bin

Returns the pointer to 1D
histogram bin.

Returns the pointer to 2D
histogram bin.

Returns the pointer to 3D
histogram bin.

Returns the pointer to nD
histogram bin.

10-4

OpenCV Reference Manual

Image Analysis Reference 10

Table 10-1

Image Analysis Reference (continued)

Group

Name

Description

Pyramid Data Types

CGet M nMaxHi st Val ue

Nor mal i zeHi st
Thr eshHi st

Conpar eHi st

CopyHi st

Set H st Bi nRanges

Cal cHi st

Cal cBackPr oj ect

Cal cBackPr oj ect Pat ch

Cal cEMD

Cal cContrast Hi st

Data Types
CvConnect edConp

Finds minimum and
maximum histogram bins.

Normalizes a histogram.
Thresholds a histogram.

Compares two
histograms.

Makes a copy of a
histogram.

Sets bounds of histogram
bins.

Calculates a histogram of
an array of single-channel
images.

Calculates back projection
of a histogram.

Calculates back projection
by comparing histograms
of the source image
patches with the given
histogram.

Computes earth mover
distance and/or a lower
boundary of the distance.

Calculates a histogram of
contrast for the
one-channel image.

Represents an element
for each single connected
components
representation in memory.

Histogram Data Types CvHi st ogram Stores all the types of
histograms (1D, 2D,
nD).

L}
intgl. 105

OpenCV Reference Manual Image Analysis Reference 10

Contour Retrieving Functions

FindContours
Finds contoursin binary image.

i nt cvFi ndContours(Ipllnmge* ing, CvMenttorage* storage, CvSeq**
firstContour, int headerSize=sizeof (CvContour),
CvCont our Ret ri eval Mode node=CV_RETR_LI ST, CvChai nAppr oxMet hod
met hod=CV_CHAI N_APPROX_SI MPLE) ;
i ng Single channel image of | PL_DEPTH_8U type. Non-zero
pixels are treated as 1-pixels. The function modifies the
content of the input parameter.

st orage Contour storage location.

first Contour Output parameter. Pointer to the first contour on the highest
level.

header Si ze Size of the sequence header; must be equal to or greater than

si zeof (CvChai n) when the method cv_CHAI N_CODE is
used, and equal to or greater than si zeof (CvCont our)
otherwise.

mode Retrieval mode.

®* CV_RETR_EXTERNAL retrieves only the extreme outer
contours (list);

® CV_RETR_LI ST retrieves al the contours (list);

®* CV_RETR_CCOW retrievesthe two-level hierarchy (list
of connected components);

®* CV_RETR_TREE retrieves the complete hierarchy (tree).
met hod Approximation method.

® CV_CHAI N_CODE outputs contours in the Freeman chain
code.

u
intgl. 106

OpenCV Reference Manual Image Analysis Reference 10

® CV_CHAI N_APPROX_NONE trandates all the points from
the chain code into points;

® CV_CHAI N_APPROX_SI MPLE compresses horizontal,
vertical, and diagonal segments, that is, it leaves only
their ending points;

® CV_CHAI N_APPROX_TC89_L1,
CV_CHAI N_APPROX_TC89_KCOs are two versions of the
Teh-Chin approximation agorithm.

Discussion

The function Fi ndCont our s retrieves contours from the binary image and returns the
pointer to thefirst contour. Access to other contours may be gained through the h_next
and v_next fields of the returned structure. The function returns total number of
retrieved contours.

StartFindContours
Initializes contour scanning process.

CvCont our Scanner cvStartFi ndContours(|pllmage* i g, CvMentt orage* storage, int
header Si ze, CvContour Retri eval Mode npode, CvChai nApproxMethod nethod);

i mg Single channel image of | PL_DEPTH_8U type. Non-zero
pixels are treated as 1-pixels. The function damages the
image.

st orage Contour storage location.

header Si ze Must be equal to or greater than si zeof (CvChai n) when

the method Ccv_CHAI N_CODE is used, and equal to or greater
than si zeof (CvCont our) otherwise.

mode Retrieval mode.

®* CV_RETR_EXTERNAL retrieves only the extreme outer
contours (list);

L}
intel.

OpenCV Reference Manual Image Analysis Reference 10

® CV_RETR_LI ST retrieves al the contours (list);

®* CV_RETR_CCOW retrievesthe two-level hierarchy (list
of connected components);

®* CV_RETR_TREE retrieves the complete hierarchy (tree).

met hod Approximation method.
® CV_CHAI N_CODE codes the output contours in the chain
code;

® CV_CHAI N_APPROX_NONE trandates all the points from
the chain code into points;

®* CV_CHAI N_APPROX_SI MPLE substitutes ending pointsfor
horizontal, vertical, and diagona segments;

® CV_CHAI N_APPROX_TC89_L1,
CV_CHAI N_APPROX_TC89_KCOs are two versions of the
Teh-Chin approximation agorithm.

Discussion

The function St art Fi ndCont our s initializes the contour scanner and returns the
pointer to it. The structure is internal and no description is provided.

FindNextContour
Finds next contour on raster.

CvSeqg* cvFi ndNext Cont our (CvCont our Scanner scanner);
scanner Contour scanner initialized by the function cvst ar t Fi ndCont our s.

Discussion

Thefunction Fi ndNext Cont our returnsthe next contour or 0, if the image contains no
other contours.

u
intgl. 109

OpenCV Reference Manual Image Analysis Reference 10

SubstituteContour
Replaces retrieved contour.

voi d cvSubstituteContour(CvContour Scanner scanner, CvSeq* newContour);

scanner Contour scanner initialized by the function cvst ar t Fi ndCont our s.
newCont our Substituting contour.
Discussion

The function Subst i t ut eCont our replaces the retrieved contour, that was returned
from the preceding call of the function Fi ndNext Cont our and stored inside the
contour scanner state, with the user-specified contour. The contour isinserted into the
resulting structure, list, two-level hierarchy, or tree, depending on the retrieval mode. If
the parameter newCont our is 0, the retrieved contour is not included into the resulting
structure, nor all of its children that might be added to this structure | ater.

EndFindContours
Finishes scanning process.

CvSeqg* cvEndFi ndCont our s(CvCont our Scanner* scanner);
scanner Pointer to the contour scanner.

Discussion

The function EndFi ndCont our s finishes the scanning process and returns the pointer
to the first contour on the highest level.

u
intgl. 109

OpenCV Reference Manual Image Analysis Reference 10

Features Functions

Fixed Filters Functions

For background on fundamental s of Fixed Filters Functions see Fixed Filtersin Image
Analysis Chapter.

Laplace

Calculates convolution of input image with
Laplacian operator.

voi d cvLapl ace(|pllmage* src, |pllmge* dst, int apertureSize=3);
src Input image.
dst Destination image.
apertureSi ze Size of the Laplacian kernel.

Discussion

The function Lapl ace calculates the convolution of the input image sr ¢ with the
Laplacian kernel of a specified sizeaper t ur eSi ze and stores the result in dst .

Sobel

Calculates convolution of input image with Sobel
operator.

voi d cvSobel (Ipllmge* src, |pllmge* dst, int dx, int dy, int
apertureSi ze=3);

src Input image.
dst Destination image.

u
intgl. 1010

OpenCV Reference Manual Image Analysis Reference 10

dx Order of the derivative x.

dy Order of the derivativey.

apertureSi ze Size of the extended Sobel kernel. The special value CvV_SCHARR,
egual to - 1, corresponds to the Scharr filter 1/ 16[- 3, - 10, -3; 0,
0, 0; 3, 10, 3]; may be transposed.

Discussion

Thefunction Sobel calculates the convolution of the input image sr ¢ with a specified
Sobel operator kernel and storesthe result in dst .

Feature Detection Functions

For background on fundamentals of Feature Detection Functions see Feature Detection
in Image Analysis Chapter.

Canny

Implements Canny algorithm for edge detection.

void cvCanny(|pllmge* ing, |pllmge* edges, double | owThresh, double
hi ghThresh, int apertureSi ze=3);

i ng Input image.
edges Image to store the edges found by the function.
| owThr esh L ow threshold used for edge searching.

hi ghThresh High threshold used for edge searching.
apertureSi ze Size of the Sobel operator to be used in the algorithm.

Discussion

The function canny finds the edges on the input image i ng and puts them into the
output image edges using the Canny algorithm described above.

u
intgl. 1011

OpenCV Reference Manual Image Analysis Reference 10

PreCornerDetect

Calculates two constraint images for corner
detection.

voi d cvPreCornerDetect(Ipllnmage* ing, |pllnage* corners, Int apertureSize);
i ng Input image.
corners Image to store the results.
apertureSi ze Size of the Sobel operator to be used in the algorithm.

Discussion

The function Pr eCor ner Det ect finds the corners on the input image i ng and stores
them into the output image cor ner s in accordance with M ethod 1for corner detection.

CornerEigenValsAndVecs

Calculates eigenvalues and eigenvectors of
image blocks for corner detection.

voi d cvCor ner Ei genVal sAndVecs(| pl |l mage* inmg, |pllmge* eigenvyv, int
bl ockSi ze, int apertureSize=3);

i ng Input image.

ei genvv Image to store the results.

bl ockSi ze Linear size of the square block over which derivatives averaging is
done.

apertureSi ze Derivative operator aperture size in the case of byte sourceformat. In
the case of floating-point input format this parameter is the number
of the fixed float filter used for differencing.

u
intgl. 1012

OpenCV Reference Manual Image Analysis Reference 10

Discussion

For every raster pixel the function Cor ner Ei genVal sAndVecs takes ablock of

bl ockSi ze xbl ockSi ze pixelswith the top-left corner, or top-bottom corner for
bottom-origin images, at the pixel, computes first derivatives b, and D, within the
block and then computes eigenvalues and eigenvectors of the matrix:

2
D D, D

C= 2% 2.0 zy , Where summations are performed over the block.

I EDILY
The format of the frame ei genvv isthe following: for every pixel of the input image
the frame contains 6 float values (11,12, x1,y1,x2,y2).
A1, A2 are eigenvalues of the above matrix, not sorted by value.
x1,y1 are coordinates of the normalized eigenvector that correspondsto 11.
x2,y2 are coordinates of the normalized eigenvector that correspondsto 12.

In case of asingular matrix or if one of the eigenvaluesis much less than another, all
six values are set to 0. The Sobel operator with aperture width aper ur eSi ze isused for
differentiation.

CornerMinEigenVal

Calculates minimal eigenvalues of image blocks
for corner detection.

voi d cvCornerM nEi genVal (| pl I mage* ing, |pllnmage* eigenvv, int blockSize, int
apertureSi ze=3);

i ng Input image.

ei genvv Image to store the results.

bl ockSi ze Linear size of the square block over which derivatives averaging is
done.

intel.

10-13

OpenCV Reference Manual Image Analysis Reference 10

apertureSi ze Derivative operator aperture size in the case of byte sourceformat. In
the case of floating-point input format this parameter is the number
of the fixed float filter used for differencing.

Discussion

For every raster pixel the function Cor ner M nEi genval takes ablock of

bl ockSi ze xbl ockSi ze pixelswith the top-left corner, or top-bottom corner for
bottom-origin images, at the pixel, computes first derivatives b, and D, within the
block and then computes eigenvalues and eigenvectors of the matrix:

Y0 Y.D0, .
C= , where summations are made over the block.
2
>y D,

In case of asingular matrix the minimal eigenvalueis set to 0. The Sobel operator
with aperture width aper ur eSi ze isused for differentiation.

FindCornerSubPix

Refines corner locations.

voi d cvFi ndCor ner SubPi x(| pl I mage* ing, CvPoint2D32f* corners, int count,
CvSize win, CvSize zeroZone, CvTernCriteria criteria);

i ng Input raster image.

corners Initial coordinates of the input corners and refined coordinates on
output.

count Number of corners.

Wi n Half sizes of the search window. For example, if win = (5, 5), then
542 +1x5%2+1 = 11x 11 pixel window to be used.

zer oZone Half size of the dead region in the middle of the search zoneto avoid

possible singularities of the autocorrelation matrix. The value of
(-1, - 1) indicates that there is no such zone.

10-14

OpenCV Reference Manual Image Analysis Reference 10

criteria Criteriafor termination of theiterative process of corner refinement.
Iterations may specify a stop when either required precisionis
achieved or the maximal number of iterations done.

Discussion.

The function Fi ndCor ner SubPi x iterates to find the accurate sub-pixel location of a
corner, or “radial saddle point”, as shown in Figure 10-1.

Figure 10-1 Sub-Pixel Accurate Corner

(red) gradient direction

Sub-pixel accurate corner (radial saddle point) locator is based on the observation that
any vector from g to p is orthogonal to the image gradient.

u
intgl. 1015

OpenCV Reference Manual Image Analysis Reference 10

The core idea of this algorithm is based on the observation that every vector from the
center q to apoint p located within a neighborhood of g is orthogonal to the image
gradient at p subject to image and measurement noise. Thus:

.
g = Vi, (q-p),

where vi , - istheimage gradient at the one of the points p in a neighborhood of g. The
value of q Isto be found such that ¢, is minimized. A system of equations may be set
up with ¢, ‘s set to zero:

[ZVI o VI ;] .q_[zw o VI ; 'Pi]: 0,

where the gradients are summed within a neighborhood (“ search window”) of q.
Calling the first gradient term G and the second gradient term b gives:

g= Glb.

The algorithm sets the center of the neighborhood window at this new center q and
then iterates until the center keeps within a set threshold.

GoodFeaturesToTrack
Determines strong corners on image.

voi d cvGoodFeat uresToTrack(| pllmage* image, |pllnmge* eiglmge, |pllnmge*
tenpl mage, CvPoi nt 2D32f* corners, int* cornerCount, double qualityLevel,
doubl e m nDi stance);

i mge Source image with byte, signed byte, or floating-point depth, single
channel.
ei gl mage Temporary image for minimal eigenvalues for pixels: floating-point,
single channel.
t enpl mage Another temporary image: floating-point, single channel.
corners Output parameter. Detected corners.
intgl. 1016

OpenCV Reference Manual Image Analysis Reference 10

cor ner Count Output parameter. Number of detected corners.

qual i tyLevel Multiplier for the maxmin eigenvalue; specifies minimal accepted
quality of image corners.

m nDi stance Limit, specifying minimum possible distance between returned
corners; Euclidian distance is used.

Discussion

The function GoodFeat ur esToTr ack finds corners with big eigenvalues in the image.
The function first calculates the minimal eigenvalue for every pixel of the source
image and then performs non-maxima suppression (only local maximain 3x3
neighborhood remain). The next step is rejecting the corners with the minimal
eigenvaluelessthanqual i t yLevel *<max_of _mi n_ei gen_val s>. Finally, thefunction
ensures that all the corners found are distanced enough from one another by getting
two strongest features and checking that the distance between the pointsis satisfactory.
If not, the point is rejected.

Hough Transform Functions

For background on fundamentals of Hough Transform Functions see Hough
Transform in Image Analysis Chapter.

HoughLines

Findslinesin binary image, SHT algorithm.

voi d cvHoughLi nes (Ipllnmage* src, double rho, double theta, int threshold,
float* lines, int |inesNunber);

src Source image.

rho Radius resolution.
theta Angle resolution.

t hreshol d Threshold parameter.

u
intgl. 1017

OpenCV Reference Manual Image Analysis Reference 10

l'ines Pointer to the array of output lines parameters. The array should have
2*| i nesNunber elements.

I i nesNunber M aximum number of lines.

Discussion

The function HoughLi nes implements Standard Hough Transform (SHT) and
demonstrates average performance on arbitrary images. The function returns number
of detected lines. Every lineis characterized by pair (p ,6), where p isdistance from
lineto point (0, 0) and 6 isthe angle between the line and horizontal axis.

HoughLinesSDiv

Findslinesin binary image, MHT algorithm.

i nt cvHoughLinesSDi v (|pllmage* src, double rho, int srn, double theta, int
stn, int threshold, float* lines, int |inesNunber);
src Source image.
rho Rough radius resolution.
srn Radius accuracy coefficient, r ho/ sr n isaccurate r ho resolution.
theta Rough angle resol ution.
stn Angle accuracy coefficient, t het a/ st n is accurate angle resolution.
t hreshol d Threshold parameter.
l'ines Pointer to array of the detected lines parameters. The array should

have2*1 i nesNunber € ements.
I i nesNunber M aximum number of lines.

Discussion

The function HoughLi nesSDi v implements coarse-to-fine variant of SHT and is
significantly faster than the latter on images without noise and with a small number of
lines. The output of the function has the same format as the output of the function
HoughLi nes.

u
intgl. 1018

OpenCV Reference Manual Image Analysis Reference 10

HoughLinesP

Finds line segments in binary image, PPHT
algorithm.

i nt cvHoughLi nesP(| pllmage* src, double rho, double theta, int threshold,
int lineLength, int lineGap, int* lines, int |linesNunber);

src Source image.

rho Rough radius resolution.

theta Rough angle resol ution.

t hreshol d Threshold parameter.

| i neLengt h Minimum accepted line length.

| i neGap Maximum length of accepted line gap.

l'ines Pointer to array of the detected line segments' ending coordinates.

The array should havel i nesNunber * 4 elements.
| i nesNumber Maximum number of line segments.

Discussion

The function HoughLi nesP implements Progressive Probabilistic Standard Hough
Transform. It retrieves no more than 1 i nesNunber line segments; each of those must
be not shorter than 1 i neLengt h pixels. The method is significantly faster than SHT on
noi sy images, containing several long lines. The function returns number of detected
segments. Every line segment is characterized by the coordinates of its

ends(x1, y1, X2, Y2) -

u
intgl. 1019

OpenCV Reference Manual Image Analysis Reference 10

Image Statistics Functions

CountNonZero
Counts non-zero pixelsin image.

i nt cvCount NonZero (I pll mage* inmage);
i mge Pointer to the source image.
Discussion

Thefunction Count NonZer o returnsthe number of non-zero pixelsin the wholeimage
or selected image RO .

SumPixels
Summarizes pixel values in image.

doubl e cvSunPi xel s(| pl | mage* i mage);
i mge Pointer to the source image.
Discussion

The function sunPi xel s returns sum of pixel valuesin the whole image or selected
image RO .

u
intgl. 1020

OpenCV Reference Manual Image Analysis Reference 10

Mean
Calculates mean value in image region.

doubl e cvMean(| pl I mage* inmage, |pllmge* nmask=0);

i mge Pointer to the source image.
mask Mask image.
Discussion

The function Mean calculates the mean of pixel values in the whole image, sel ected
RO or, if mask isnot NULL, in an image region of arbitrary shape.

Mean_StdDev

Calculates mean and standard deviation inimage
region.

voi d cvMean_StdDev(| pl | mage* i mage, doubl e* mean, doubl e* st ddev,
| pl I mge* mask=0);

i mge Pointer to the source image.

mean Pointer to returned mean.

st ddev Pointer to returned standard deviation.
mask Pointer to the single-channel mask image.
Discussion

The function Mean_sSt dDev calculates mean and standard deviation of pixel valuesin
the whole image, selected RO or, if mask isnot NULL, in an image region of arbitrary
shape. If the image has more than one channel, the cO must be selected.

u
intgl. 1021

OpenCV Reference Manual Image Analysis Reference 10

MinMaxLoc

Finds global minimum and maximum in image
region.

voi d cvM nMaxLoc(| pl | mage* i mage, doubl e* mi nVal , doubl e* maxVal
CvPoint* m nLoc, CvPoint* maxLoc, |pllnmage* nmask=0);

i mge Pointer to the source image.

m nval Pointer to returned minimum value.

max Val Pointer to returned maximum value.

mi nLoc Pointer to returned minimum location.
maxLoc Pointer to returned maximum location.
mask Pointer to the single-channel mask image.
Discussion

The function M nvaxLoc finds minimum and maximum pixel values and their
positions. The extremums are searched over the whole image, selected RO or, if mask
isnot NULL, in animage region of arbitrary shape. If the image has more than one
channel, the co must be selected.

Norm

Calculates image norm, difference norm or
relative difference norm.

doubl e cvNorm(| pllrmage* ingA, |pllmage* ingB, int nornType, |pllmge* mask=0
)

i mA Pointer to the first source image.
i mA Pointer to the second source image if any, NULL otherwise.
nor niTy pe Type of norm.

u
intgl. 1022

OpenCV Reference Manual Image Analysis Reference 10

mask Pointer to the single-channel mask image.

Discussion

The function Nor mcal cul ates images norms defined below. If i ngB = NULL, the
following three norm types of image A are cal cul ated:

Nor niType = CV_C: |Alc = max (A |),

NN
Nor mType = CV_L1: |A]_ =

1
M
>

Nor nType = CV_L2: ||A||L2

If i gB= NULL, the difference or relative difference norms are calcul ated:

Nor nType = CV_C [A-B|¢ = rrax(|Ai —Bi|),
NN,
Nornifype = CV_L1: JA-Bl_ = > > |A; B,
i=1j =1
N, N,
2
Nor nilype = CV_L2: ||A—B||L2 = Z Z (Aij =Bij)",
i=1j =1
. max (A —B;j|)
i
NN,
> > A Bl
Nor nType = CV_RELATIVELL : |A-B]_/IB] = i :“Nx:lNy ,
> 2 B
i=1j =1

u
intgl. 1023

OpenCV Reference Manual Image Analysis Reference 10

N
Y XAy -8)

i=1j =1

Nor nilfype = CV_RELATI VEL2: ||A—B||L2/||B||L2 =

The function Nor m returns the calculated norm.

Moments

Calculatesall moments up to third order of image
plane and fills moment state structure.

void cvMoment s(| pl | mage* i mage, CvMoments* nonents, int isBinary=0);

i mge Pointer to the image or to top-left corner of itsROl .
nmoment s Pointer to returned moment state structure.
i sBinary If the flag is non-zero, all the zero pixel values are treated as zeroes,

all the others are treated as ones.

Discussion

Thefunction Morrent s cal culates moments up to the third order and writes the result to
the moment state structure. This structure is used then to retrieve a certain spatial,
central, or normalized moment or to cal culate Hu moments.

u
intgl. 10.24

OpenCV Reference Manual Image Analysis Reference 10

GetSpatialMoment
Retrieves spatial moment from moment state

structure.

doubl e cvGet Spati al Moment (CvMonent s* noments, int x_order, int y_order);

moment s Pointer to the moment state structure.
x_order Order x of required moment.
y_order Order y of required moment

(0<=x_order,y_order;x_order +y_order <= 3).
Discussion

The function Get Spat i al Monent retrieves the spatial moment, which is defined as:

_ x_order y_order
M(_order,y_order = Zl (X, y)x y , Where
X,y

I (x,y) istheintensity of the pixel (x,y).

GetCentralMoment

Retrieves
structure.

central moment from moment state

doubl e cvGet Central Moment (CvMonment s* noments, int x_order, int y_order);

moment s Pointer to the moment state structure.
x_order Order x of required moment.
y_order Order y of required moment

(0<=x_order,y_order;x_order +y_order <= 3).

10-25

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Get Cent r al Monent retrieves the central moment, which is defined as:

x_order _.y_order

(y-%) , where

Uy order,y order = ZI (X, ¥y)(x =X)
X,y

I (x,y) istheintensity of pixel (x,y), x isthe coordinate x of the mass center, y isthe
coordinatey of the mass center:
Mo ¥

X =

M1
Moo

GetNormalizedCentralMoment

Retrieves normalized central moment from
moment state structure.

doubl e cvGet Normal i zedCentr al Morrent (CvMoent s* nmoments, int x_order, int

y_order);
nmoment s Pointer to the moment state structure.
x_order Order x of required moment.
y_order Order y of required moment
(0<=x_order,y_order;x_order +y_order <= 3).
Discussion

The function Get Nor mal i zedCent r al Monent retrieves the normalized central
moment, which is defined as:

_ l’lx_order,y_order
Nx_order,y_order = Nf)(x_order ¥y order)/2+1)"
.0

u
intgl. 1026

OpenCV Reference Manual Image Analysis Reference 10

GetHuMoments

Cal cul ates seven moment invariants from moment
state structure.

voi d cvGet HuMbrent s(CvMoment s* monents, CvHuMoment s* HuMonents);

monment s Pointer to the moment state structure.
HuMonent s Pointer to Hu moments structure.
Discussion

The function Get HuMbrrent s calculates seven Hu invariants using the following
formulas:

hy = Mg+ Mgz s

2 2
hy = (My—Mgp)” +4n7;,

2 2
hy = (MNg—3N15)" + (3N —Mpg)
2 2
hy= (Mg+Mp) + My +Mgg) s
2 2
h5 = (M3p—3N12)(M3p + M) [(M3g+N12)" —3(Myy + Meg)]

2 2
+(3Ny —Ng3) Moy Nz [B(M3g + M) — (Mo +Meg)]

2 2
hg = Myy—Ng)[(Mgg+ M) —(Mog +Mz) 1+ 4N11(Mgg + N12) (Mg + Mpg) »

h7 (31'121_7103)(7121+n03)[3(n30+n12)2_(n21+Tl03)2]
—(M3g—3N12)(Myy + N3)[B(Mg + Tllz)z_(n21 + Tlog)z]

These values are proved to be invariants to the image scale, rotation, and reflection
except the first one, whose sign is changed by reflection.

u
intgl. 1027

OpenCV Reference Manual Image Analysis Reference 10

Pyramid Functions

PyrDown

Downsamples image.

voi d cvPyrDown(l pl I mage* src, |pllmge* dst, IplFilter
filter=IPL_GAUSSI AN 5x5);

src Pointer to the source image.
dst Pointer to the destination image.
filter Type of thefilter used for convolution; only | PL_GAUSSI AN_5x5 iS

currently supported.

Discussion

The function Pyr Down performs downsampling step of Gaussian pyramid
decomposition. First it convolves source image with the specified filter and then
downsamples the image by rejecting even rows and columns. So the destination image
isfour times smaller than the source image.

PyrUp

Upsamplesimage.

void cvPyrUp(lpllmage* src, |pllmage* dst, IplFilter filter=IPL_GAUSSI AN_5x5);

src Pointer to the source image.
dst Pointer to the destination image.
filter Type of thefilter used for convolution; only | PL_GAUSSI AN_5x5 iS

currently supported.

u
intgl. 1028

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Pyr Up performs up-sampling step of Gaussian pyramid decomposition.
First it upsamples the source image by injecting even zero rows and columns and then
convolves result with the specified filter multiplied by 4 for interpolation. So the
destination image is four times larger than the source image.

PyrSegmentation
I mplements image segmentation by pyramids.

voi d cvPyr Segnment ati on(| pl | mage* srclnmage, |pllmage* dstlmage, CvMenftorage*
storage, CvSeq** conp, int |evel, double threshol dl, double threshol d2);

srcl mage Pointer to the input image data.

dst | mage Pointer to the output segmented data.

st orage Storage; stores the resulting sequence of connected components.
conp Pointer to the output sequence of the segmented components.

| evel Maximum level of the pyramid for the segmentation.

t hreshol d1 Error threshold for establishing the links.
t hr eshol d2 Error threshold for the segments clustering.

Discussion

The function Pyr Segnent at i on implements image segmentation by pyramids. The
pyramid builds up to thelevel | evel . The links between any pixel a onlevel i andits
candidate father pixel b on the adjacent level are established if

p(c(a),c(b)) <t hreshol d1. After the connected components are defined, they are
joined into several clusters. Any two segments A and B belong to the same cluster, if
p(c(A),c(B)) <t hreshol d2. Theinput image has only one channel, then

p(ct c?) = |c*=c?. If the input image has three channels (red, green and blue), then
p(c’c?) = 03-(c;—c?)+059- (cg—c5)+0.11- (cy —cp) . There may be more than one
connected component per a cluster.

10-29

OpenCV Reference Manual Image Analysis Reference 10

Input sr cl mage and output dst | mage should have theidentical | PL_DEPTH_8U depth
and identical number of channels (1 or 3).

Morphology Functions

CreateStructuringElementEx
Creates structuring element.

| pl ConvKer nel * cvCreateStructuringEl enment Ex(int nCol s, int nRows, int anchor X,
i nt anchorY, CvEl ement Shape shape, int* val ues);

nCol s Number of columnsin the structuring element.

nRows Number of rowsin the structuring element.

anchor X Relative horizontal offset of the anchor point.

anchor Y Relative vertical offset of the anchor point.

shape Shape of the structuring element; may have the following values:

® CV_SHAPE_RECT, arectangular element;
® CV_SHAPE_CROGSS, across-shaped el ement;
® CV_SHAPE_ELLI PSE, an €liptic element;

®* CV_SHAPE_cusTOM a user-defined element. In this case the
parameter val ues specifiesthe mask, that is, which neighbors of
the pixel must be considered.

val ues Pointer to the structuring element data, a plane array, representing
row-by-row scanning of the element matrix. Non-zero values
indicate points that belong to the element. If the pointer isNULL, then
all values are considered non-zero, that is, the element is of a
rectangular shape. This parameter is considered only if the shapeis
CV_SHAPE_CUSTOM

u
intgl. 1030

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Cr eat eSt r uct uri ngEl ement Ex allocates and fills the structure
| pl ConvKer nel , which can be used as a structuring element in the morphological
operations.

ReleaseStructuringElement
Deletes structuring element.

voi d cvRel easeStructuringEl enent (I pl ConvKer nel ** ppEl ement) ;
pPpEl ement Pointer to the deleted structuring element.

Discussion

The function Rel easeSt ruct uri ngEl enent releases the structure | pl ConvKer nel
that is no longer needed. If *ppEl ement iSNULL, the function has no effect. The
function returns created structuring element.

Erode

Erodes image by using arbitrary structuring
element.

voi d cvErode(Ipllmge* src, |pllmge* dst, |plConvKernel* B, int iterations);

src Source image.

dst Destination image.

B Structuring element used for erosion. If NULL, a 3x3 rectangul ar
structuring element is used.

iterations Number of times erosion is applied.

u
intgl. 1031

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Er ode erodes the source image. The function takes the pointer to the
structuring element, consisting of “zeros’ and “minus ones’ ; the minus ones determine
neighbors of each pixel from which the minimum istaken and put to the corresponding
destination pixel. The function supports the in-place mode when the source and
destination pointers are the same. Erosion can be applied several times (i t er at i ons
parameter). Erosion on a color image means independent transformation of all the
channels.

Dilate

Dilates image by using arbitrary structuring

element.

void cvDilate(Ipllnmge* pSrc, |pllnmge* pDst, IplConvKernel* B, int

iter

ations);

pSrc Source image.

pDst Destination image.

B Structuring element used for dilation. If NULL, a 3x3 rectangular
structuring element is used.

iterations Number of times dilation is applied.

Discussion

Thefunction Di | at e performsdilation of the source image. It takes pointer to the
structuring element that consists of “zeros” and “minus ones’; the minus ones
determine neighbors of each pixel from which the maximum is taken and put to the
corresponding destination pixel. The function supports in-place mode. Dilation can be
applied several times (i t er at i ons parameter). Dilation of a color image means
independent transformation of all the channels.

10-32

OpenCV Reference Manual Image Analysis Reference 10

MorphologyEx

Performs advanced mor phological
transformations.

voi d cvMor phol ogyEx(1pl I mage* src, |pllnmage* dst, |pllmge* tenp,
| pl ConvKernel * B, CvMorphQp op, int iterations);

src Source image.

dst Destination image.

tenp Temporary image, required in some cases.
B Structuring element.

op Type of morphological operation:

®* CV_MOP_CPEN, Opening;

® CV_MOP_CLOSE, closing;

®* CV_MOP_GRADI ENT, morphological gradient;

®* CV_MOP_TOPHAT, top hat;

®* CV_MOP_BLACKHAT, black hat.

(See Morphology for description of these operations).

iterations Number of times erosion and dilation are applied during the complex
operation.

Discussion

The function Mor phol ogyEx performs advanced morphological transformations. The
function uses Er ode and Di | at e to perform more complex operations. The parameter
t emp must be non-NULL and point to the image of the same size and format assr ¢ and
dst when op iS CV_MOP_GRADI ENT, or when op iSCV_MOP_TOPHAT Of op iS
CV_MOP_BLACKHAT and sr ¢ isequal to dst (in-place operation).

u
intgl. 1033

OpenCV Reference Manual Image Analysis Reference 10

Distance Transform Function

DistTransform

Calculates distance to closest zero pixel for all
non-zero pixels of source image.

void cvDi st Transform (I pllmge* src, |pllnmge* dst, CvDi sType disType,
CvDi sMaskType nmaskType, float* mask);

src Source image.

dst Output image with calcul ated distances.

di sType Type of distance; can becv_DI ST_L1,CV_DI ST_L2, CV_DI ST_Cor
CV_DI ST_USER.

maskType Size of distance transform mask; can be cv_DI ST_MASK_3x3 or
CV_DI ST_MASK_5x5.

mask Pointer to the user-defined mask used with the distance type

CV_DI ST_USER.

L}
intel.

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Di st Tr ansf or m approximates the actual distance from the closest zero
pixel with a sum of fixed distance values: two for 3x3 mask and three for 5x5 mask.
Figure 10-2 shows the result of the distance transform of a 7x 7 image with a zero
central pixel.

Figure 10-2 3x3 Mask

45 | 4 353|354 4.5
4 3 2512|253 4
35125(15|1|15|25|35
3 2 1 01 2 3
35125(15|1|15|25|35
4 3 2512|253 4
45 | 4 353|354 4.5

This example corresponds to a 3x3 mask; in case of user-defined distance type the user
sets the distance between two pixels, that share the edge, and the distance between the
pixels, that share the corner only. For this case the values are 1 and 1.5
correspondingly. Figure 10-3 shows the distance transform for the same image, but for
a 5x5 mask. For the 5x5 mask the user sets an additional distance that is the distance
between pixels corresponding to the chess knight move. In this example the additional
distanceisequal to 2. For cv_DI ST_L1, CV_DI ST_L2, and CvV_DI ST_C the optimal
precalculated distance values are used.

10-35

OpenCV Reference Manual Image Analysis Reference 10

Figure 10-3 5x5 Mask

451353 [3|3 |35|4
353 |2 (2|2 |3 |35
3 |2 |15(1]15]2 |3
3 (2 (1 (0]1 |2 |3
3 |2 |15(1]15]2 |3
353 |2 (2|2 |3 |35
4 |35/3 [3|3 |35|4

Threshold Functions

AdaptiveThreshold
Provides adaptive thresholding binary image.

voi d cvAdapti veThreshol d(| pl I mage* src, |pllmge* dst, double max,
CvAdapti veThr eshivet hod net hod, CvThreshType type, double* paraneters);

src Source image.
dst Destination image.

u
intgl. 1036

OpenCV Reference Manual Image Analysis Reference 10

max Max parameter used with the types Cv_THRESH_BI NARY and
CV_THRESH_BI NARY_I NV only.

met hod M ethod for the adaptive threshold definition; now
CV_STDDEF_ADAPTI VE_THRESH only.

type Thresholding type; must be one of

¢ CV_THRESH Bl NARY, val = (val >Thr esh?MAX:0);

¢ CV_THRESH BI NARY_I NV, val = (val >Thr esh?0:MAX);
¢ CV_THRESH TOZERQ, val = (val >Thresh?val :0);

¢ CV_THRESH TOZERO I NV, val = (val >Thresh?0:val).

par anet er s Pointer to the list of method-specific input parameters. For the
method Cv_STDDEF_ADAPTI VE_THRESH the value par amet er s[0] IS
the size of the neighborhood: 1- (3x3), 2- (5x5), or 3- (7x7), and
par anet er s[1] isthe value of the minimum variance.

Discussion

The function Adapt i veThreshol d calculates the adaptive threshold for every input
image pixel and segmentsimage. The algorithm is as follows.

Let {f;;},1<i <1,1<j <J betheinputimage. For every pixel i,j themean m; and

variance v, ; are calculated asfollows:

p p p p
n"j:]_/Zp-Z Zfi+s,j+t’vij:1/2p.z Z|fi+s,j+t_mj|’

S =—-pt =-p s=—pt =-—p

where p xp is the neighborhood.

Local threshold for pixel i ,j ist;; =m; +v;; forv,; >v; ,andt;; =t;; , for
Vij SVpin, Wherev ;- isthe minimumvariancevaue. If j = 1,thent;; =t;, ,,,
ty =t wherev, ; >vandv;; <vy, ford <igvi =igal <jig).

Output segmented image is calculated as in the function Thr eshol d.

10-37

OpenCV Reference Manual Image Analysis Reference 10

Threshold
Thresholds binary image.

void cvThreshol d(I plInmge* src, |pllmge* dst, float thresh, float naxval ue,
CvThr eshType type);

src Source image.

dst Destination image; can be the same as the parameter src.
t hresh Threshold parameter.

maxval ue Maximum value; parameter, used with threshold types

CV_THRESH_BI NARY, CV_THRESH_BI NARY_I NV, and
CV_THRESH_TRUNC.

type Thresholding type; must be one of
® CV_THRESH_BI NARY, val = (val >thresh maxval ue:0);
® CV_THRESH BI NARY_I NV, val = (val >thresh 0: maxval ue);
® CV_THRESH TRUNC, val = (val >t hresh?t hr esh: maxval ue);
® CV_THRESH_TOZERQ, val = (val >thresh val :0),
® CV_THRESH_TOZERO_I NV, val = (val >thresh O:val).

Discussion

The function Thr eshol d appliesfixed-level thresholding to grayscale image. The
result is either a grayscale image or a bi-level image. The former variant istypically
used to remove noise from the image, while the latter one is used to represent a
grayscale image as composition of connected components and after that build contours
on the components viathe function Fi ndCont our s. Figure 10-4 illustrates meanings of
different threshold types:

u
intgl. 10.38

OpenCV Reference Manual Image Analysis Reference 10

Figure 10-4 Meanings of Threshold Types

r““-“";;;;:;;; ------------------------- | Walue and Threshold Lewvel
i \ ;
Threshold Binary
I Threshold Bmary, Inverted
I \\ Truncate
: \ :

\ Threshold to Zero, Inverted

’; Threshold to Zero

u
intgl. 1030

OpenCV Reference Manual

Image Analysis Reference 10

Flood Filling Function

FloodFill

Makes flood filling of image connected domain.

void cvFl oodFill (Ipllnmage* inmy, CvPoint seedPoint, double newval, double

| oDi f f,

i ny
seedPoi nt
newval

| oDi f f

upDi f f

conp

connectivity

Discussion

doubl e upDi ff, CvConnectedConp* conp, int connectivity=4);

Input image; repainted by the function.
Coordinates of the seed point inside the image ROI.
New value of repainted domain pixels.

Maximal lower difference between the values of pixel belonging to
the repainted domain and one of the neighboring pixels to identify
the latter as belonging to the same domain.

Maximal upper difference between the values of pixel belonging to
the repainted domain and one of the neighboring pixels to identify
the latter as belonging to the same domain.

Pointer to structure the function fills with the information about the
repainted domain.

Type of connectivity used within the function. If it isfour, whichis
default value, the function tries out four neighbors of the current
pixel, otherwise the function tries out all the eight neighbors.

The function FI oodFi I | fillsthe seed pixel neighborhoods inside which all pixel
values are close to each other. The pixel is considered to belong to the repainted
domain if its value v meets the following conditions:

Vo—d; 4V £v0+dup,

10-40

OpenCV Reference Manual Image Analysis Reference 10

where v, isthe value of at least one of the current pixel neighbors, which already
belongs to the repainted domain. The function checks 4-connected neighborhoods of
each pixel, that is, its side neighbors.

Histogram Functions

CreateHist
Creates histogram.

CvHi st ogrant cvCreateHist(int cDins, int* di ms, CvHi st Typetype,
float** ranges=0, int uniforn¥l);

cDi ns Number of histogram dimensions.
di s Array, elements of which are numbers of bins per each dimension.
type Histogram representation format: Cv_HI ST_ARRAY means that

histogram datais represented as an array; CV_H ST_TREE means that
histogram data is represented as a sparse structure, that is, the
balanced tree in this implementation.

ranges 2D array, or more exactly, an array of arrays, of bin ranges for every
histogram dimension. Its meaning depends on the uniform
parameter value.

uni form Uniformity flag; if not 0, the histogram has evenly spaced bins and
every element of r anges array isan array of two numbers: lower and
upper boundaries for the corresponding histogram dimension. If the
parameter is equal to O, theni th element of ranges array
containsdi ms[i] +1 elements: | (0),u(0) == 1(1),u(1l) ==1(2),
., u(n-1),where | (i) and u(i) arelower and upper
boundaries for thei th bin, respectively.

u
intgl. 1041

OpenCV Reference Manual

Image Analysis Reference 10

Discussion

The function Cr eat eH st creates a histogram of the specified size and returns the
pointer to the created histogram. If the array r anges is 0, the histogram bin ranges
must be specified later viathe function Set Hi st Bi nRanges.

ReleaseHist
Releases histogram header and underlying data.

voi d cvRel easeHi st (CvHi stogrant* hist);

hi st

Pointer to the released histogram.

Discussion

The function Rel easeHi st releases the histogram header and underlying data. The
pointer to histogram is cleared by the function. If *hi st pointer is already NULL, the
function has no effect.

MakeHistHeaderForArray

Initializes histogram header.

voi d cvMakeHi st Header For Array(i nt cDi s, i nt* di ms, CvHi st ogr ant hi st,
fl oat* dat a,

chi ns
di ms
hi st
dat a
ranges

uni form

float** ranges=0, int uniformel);
Histogram dimension number.
Dimension size array.
Pointer to the histogram to be created.
Pointer to the source data histogram.
2D array of bin ranges.
If not O, the histogram has evenly spaced bins.

10-42

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function MakeHi st Header For Arr ay initializes the histogram header and sets the
data pointer to the given value dat a. The histogram must have the type

CV_H ST_ARRAY. If the array r anges is O, the histogram bin ranges must be specified
later viathe function Set Hi st Bi nRanges.

QueryHistValue 1D

Queries value of histogram bin.

float cvQueryHistVal ue_1D(CvH stogrant hist, int idx0);

hi st Pointer to the source histogram.
i dx0 Index of the bin.
Discussion

The function Quer yHi st Val ue_1D returnsthe value of the specified bin of 1D
histogram. If the histogram representation is a sparse structure and the specified binis
not present, the function return 0.

QueryHistValue 2D

Queries value of histogram bin.

fl oat cvQueryHi stVal ue_2D(CvH stogrant hist, int idx0, int idxl);

hi st Pointer to the source histogram.
i dx0 Index of the bin in the first dimension.
i dx1 Index of the bin in the second dimension.

u
intgl. 1043

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Quer yHi st Val ue_2D returnsthe value of the specified bin of 2D
histogram. If the histogram representation is a sparse structure and the specified bin is
not present, the function return O.

QueryHistValue 3D

Queries value of histogram bin.

fl oat cvQueryHi stVal ue_3D(CvHi stogrant hist, int idx0, int idx1l, int idx2);

hi st Pointer to the source histogram.

i dx0 Index of the bin in the first dimension.

i dx1 Index of the bin in the second dimension.
i dx2 Index of the bin in the third dimension.
Discussion

The function Quer yHi st Val ue_3D returnsthe value of the specified bin of 3D
histogram. If the histogram representation is a sparse structure and the specified binis
not present, the function return 0.

QueryHistValue _nD

Queries value of histogram bin.

float cvQueryHistVal ue_nD(CvH stogranm® hist, int* idx);
hi st Pointer to the source histogram.
i dx Array of bin indices, that is, a multi-dimensional index.

L}
intel.

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Quer yHi st Val ue_nD returns the value of the specified bin of nD
histogram. If the histogram representation is a sparse structure and the specified binis
not present, the function return 0. The function is the most general in the family of
Quer yHi st Val ue functions.

GetHistValue 1D

Returns pointer to histogram bin.

float* cvCet Hi st Val ue_1D(CvHi stogrant hist, int idx0);

hi st Pointer to the source histogram.
i dx0 Index of the bin.
Discussion

The function Get Hi st Val ue_1D returns the pointer to the histogram bin, given its
coordinates. If the bin isnot present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

GetHistValue 2D

Returns pointer to histogram bin.

float* cvCet Hi st Val ue_2D(CvHistogrant hist, int idx0, int idxl);

hi st Pointer to the source histogram.
i dx0 Index of the bin in the first dimension.
i dx1 Index of the bin in the second dimension.

u
intgl. 1045

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Get Hi st Val ue_2D returns the pointer to the histogram bin, given its
coordinates. If the bin isnot present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

GetHistValue 3D

Returns pointer to histogram bin.

float* cvCet Hi st Val ue_3D(CvHi stogrant hist,int idx0, int idx1, int idx2);

hi st Pointer to the source histogram.

i dx0 Index of the bin in the first dimension.

i dx1 Index of the bin in the second dimension.
i dx2 Index of the bin in the third dimension.
Discussion

The function Get Hi st Val ue_3D returns the pointer to the histogram bin, given its
coordinates. If the bin isnot present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

GetHistValue_nD

Returns pointer to histogram bin.

float* cvCet Hi st Val ue_nD(CvHi stogrant hist, int* idx);
hi st Pointer to the source histogram.
i dx Array of bin indices, that is, a multi-dimensional index.

u
intgl. 1046

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Get Hi st Val ue_nD returns the pointer to the histogram bin, given its
coordinates. If the bin isnot present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

GetMinMaxHistValue

Finds minimum and maximum histogram bins.

void cvGet M nMaxH st Val ue(CvHi stogrant hist, float* minVval, float* naxVal,
int* mnldx=0, int* maxldx=0);

hi st Pointer to the histogram.

m nval Pointer to the minimum value of the histogram; can be NULL.

max Val Pointer to the maximum value of the histogram; can be NULL.

m nl dx Pointer to the array of coordinates for minimum. If not NULL, must

havehi st ->c_di ns elements.

max| dx Pointer to the array of coordinates for maximum. If not NULL, must
havehi st ->c_di ns elements.

Discussion

Thefunction Get M nMaxHi st Val ue findsthe minimum and maximum histogram bins
and their positions. In case of several maximums or minimums the leftmost ones are
returned.

NormalizeHist
Normalizes histogram.

void cvNormal i zeHi st (CvHi stogrant hist, float factor);
hi st Pointer to the histogram.

L}
intel.

OpenCV Reference Manual Image Analysis Reference 10

factor Normalization factor.

Discussion

The function Nor mal i zeHi st normalizes the histogram, such that the sum of
histogram bins becomes equal to f act or.

ThreshHist
Thresholds histogram.

void cvThreshHi st(CvHi stogrant hist, float thresh);

hi st Pointer to the histogram.
thresh Threshold level.
Discussion

The function Thr eshH st clears histogram bins that are below the specified level.

CompareHist
Compares two histograms.

doubl e cvConpareHi st(CvHi stogrant histl, CvHi stogranm® hist2, CvConpareMethod

met hod) ;
hist1 First histogram.
hi st 2 Second histogram.
met hod Comparison method; may be any of those listed below:

* CV_COVP_CORREL;
* CV_COWP_CHI SQR,
* CV_COVP_| NTERSECT.

u
intgl. 1048

OpenCV Reference Manual Image Analysis Reference 10

Discussion
The function Conpar eHi st compares two histograms using specified method.

D9V

CV_COWP_CORREL result = ——uw—,
2% 2
20 XV
i i

(q; _Vi)z
CV_COW_CH SQRresult = z q—
N i
i

+Vi

CV_COWP_I| NTERSECT result = eri n(g;,Vv;)-.

The function returns the comparison result.

CopyHist

Copies histogram.

voi d cvCopyHi st (CvHi stogram® src, CvHi stogrant* dst);

src Source histogram.
dst Pointer to destination histogram.
Discussion

Thefunction CopyHi st makesacopy of the histogram. If the second histogram pointer
*dst isnull, itisallocated and the pointer is stored at *dst . Otherwise, both
histograms must have equal types and sizes, and the function simply copies the source
histogram bins values to destination histogram.

L}
intel.

OpenCV Reference Manual Image Analysis Reference 10

SetHistBinRanges
Sets bounds of histogram bins.

voi d cvSet H st Bi nRanges(CvHi st ogram® hist, float** ranges, int uniforml);

hi st Destination histogram.

ranges 2D array of bin ranges.

uni form If not O, the histogram has evenly spaced bins.
Discussion

Thefunction Set Hi st Bi nRanges isastand-alone function for setting bin rangesin the
histogram. For more detailed description of the parametersr anges and uni f or msee
Cr eat eH st function, that can initialize the ranges as well. Ranges for histogram bins
must be set before the histogram is calculated or backproject of the histogram is
calculated.

CalcHist

Calculates histogram of image(s).

void cvCal cHi st(Ipllmage** ing, CvH stogrant hist, int doNotd ear=0,
I pl I mage* mask=0);

i Ny Source images.

hi st Pointer to the histogram.

doNot Cl ear Clear flag.

mask Mask; determines what pixels of the source images are considered in

process of histogram calculation.

u
intgl. 10.50

OpenCV Reference Manual Image Analysis Reference 10

Discussion

Thefunction Cal cH st calculatesthe histogram of the array of single-channel images.
If the parameter doNot O ear is0, then the histogram is cleared before cal culation;
otherwise the histogram is simply updated.

CalcBackProject
Calculates back project.

voi d cvCal cBackProject(Ipllnmge** ing, |Ipllmge* dstlnmy, CvHi stogrant hist);

i Ny Source images array.
dstlng Destination image.
hi st Source histogram.
Discussion

Thefunction Cal cBackProj ect calculatesthe back project of the histogram. For each
group of pixelstaken from the same position from all input single-channel images the
function puts the histogram bin value to the destination image, where the coordinates
of the bin are determined by the values of pixelsin thisinput group. In terms of
statistics, the value of each output image pixel characterizes probability that the
corresponding input pixel group belongs to the object whose histogram is used.

For example, to find ared object in the picture, the procedureis as follows:

1. Calculate a hue histogram for the red object assuming the image contains only
this object. The histogram islikely to have a strong maximum, corresponding
to red color.

2. Calculate back project using the histogram and get the picture, where bright
pixels correspond to typical colors (e.g., red) in the searched object.

3. Find connected components in the resulting picture and choose the right
component using some additional criteria, for example, the largest connected
component.

10-51

OpenCV Reference Manual Image Analysis Reference 10

CalcBackProjectPatch
Calculates back project patch of histogram.

voi d cvCal cBackPr oj ect Pat ch(| pl | mage** i ng, | pl | mage* dst, CvSi ze pat chSi ze,

CvHi

stogrant hist, CvConpareMethod nmethod, float nornfFactor);

i Ny Source images array.

dst Destination image.

pat chSi ze Size of patch slid though the source image.
hi st Probabilistic model.

met hod Method of comparison.

nor nFact or Normalization factor.

Discussion

The function Cal cBackPr oj ect Pat ch calculates back projection by comparing
histograms of the source image patches with the given histogram. Taking measurement
results from some image at each location over ROI creates an array i mg. These results
might be one or more of hue, x derivative, y derivative, Laplacian filter, oriented
Gabor filter, etc. Each measurement output is collected into its own separate image.
Thei mg image array is a collection of these measurement images. A
multi-dimensional histogram hi st is constructed by sampling from the i ng image
array. Thefinal histogram is normalized. The hi st histogram has as many dimensions
as the number of elementsini ng array.

Each new image is measured and then converted into ani ng image array over achosen
ROI. Histograms are taken from thisi ng image in an area covered by a “ patch” with
anchor at center as shown in Figure 10-5. The histogram is normalized using the
parameter nor m f act or S0 that it may be compared with hi st . The calculated
histogram is compared to the model histogram; hi st usesthe function cvConpar eHi st
(the parameter et hod). The resulting output is placed at the location corresponding to
the patch anchor in the probability image dst . This processisrepeated asthe patch is
slid over the ROI. Subtracting trailing pixels covered by the patch and adding newly
covered pixelsto the histogram can save alot of operations.

10-52

OpenCV Reference Manual Image Analysis Reference 10

Figure 10-5 Back Project Calculation by Patches

img
Patch images

ROI

Each image of the image array i ng shown in the figure stores the corresponding
element of a multi-dimensional measurement vector. Histogram measurements are
drawn from measurement vectors over a patch with anchor at the center. A
multi-dimensional histogram hi st is used viathe function Conpar eHi st to calculate
the output at the patch anchor. The patch is slid around until the values are calculated

over thewhole ROI.

u
intgl. 1053

OpenCV Reference Manual Image Analysis Reference 10

CalcEMD

Computes earth mover distance.

voi d cvCal cEMD(fl oat* signaturel, int sizel, float* signature2, int size2, int
dims, CvDi sType distType, float *distFunc (float* f1, float* f2, void*
userParam), float* end, float* |owerBound, void* userParan;

si gnat urel First signature, array of si zel * (dins + 1) elements.

si zel Number of elementsin the first compared signature.

si gnat ur e2 Second signature, array of size2 * (dins + 1) elements.

si ze2 Number of elementsin the second compared signature.

di ms Number of dimensionsin feature space.

di st Type Metrics used; cv_DI ST_L1, CV_DI ST L2, and cv_DI ST_C stand for

one of the standard metrics. Cv_DI ST_USER meansthat a user-defined
function is used as the metric. The function takes two coordinate
vectors and user parameter and returns the distance between two

vectors.

di st Func Pointer to the user-defined ground distance function if di st Type is
CV_DI ST_USER.

end Pointer to the calculated emd distance.

| ower Bound Pointer to the calculated lower boundary.

user Par am Pointer to optional data that is passed into the distance function.

Discussion

The function cal cEMD computes earth mover distance and/or alower boundary of the
distance. The lower boundary can be calculated only if di ms > 0, and it has sense only
if the metric used satisfies all metric axioms. The lower boundary is calculated very
fast and can be used to determine roughly whether the two signatures are far enough so
that they cannot relate to the same object. If the parameter di ns isequal to O, then

si gnat ur el and si gnat ur e2 are considered simple 1D histograms. Otherwise, both
signatures must ook as follows:

L}
intel.

OpenCV Reference Manual Image Analysis Reference 10

(wei ght _i 0,x0_i0,x1_i0,...,x(dims-1)_iO0,
weight i1,x0_i1,x1_i1,...,x(dims-1)_il,
wei ght _(si zel-1),x0_(sizel-1),x1_(sizel-1, ...,x(dinms-1) (sizel-1)),

wherewei ght _i k istheweight of i k cl uster, while x0_i k,..., x(di ms-1) _i k are
coordinates of the cluster i k.

If the parameter | ower _bound isequal to 0, only emd is calculated. If the calculated
lower boundary is greater than or equal to the value stored at this pointer, then the true
emd isnot calculated, but is set to that | ower _bound.

CalcContrastHist
Calculates histogram of contrast.

void cvCal cContrastHi st(Ipllmage **src, CvH stogrant hist, int dontC ear,
I pl I mage* mask);

src Pointer to the source images, (now only src[0] is used).
hi st Destination histogram.

dont Cl ear Clear flag.

mask Mask image.

Discussion

The function Cal cCont r ast Hi st calculates a histogram of contrast for the
one-channel image. If dont _cl ear parameter is 0 then the histogram is cleared before
calculation, otherwiseit is simply updated. The algorithm works asfollows. Let s bea
set of pairs(x;, x,) of neighbor pixelsintheimagef (x) and

S(t) = {(XXx)e S, f(x) <t <f(Xxy) vi(xy) St <f(xy)}.

Let's denote
{G} as the destination histogram,

10-55

OpenCV Reference Manual Image Analysis Reference 10

E; as the summary contrast corresponding to the threshold t,
N; as the counter of the edges detected by the threshold t.
Then
N = ISOLE = 3 Cxpxpt),

(x1Xp) € S(t)

where C(xy,x,,t) = mi n{|f (x;) -t ||f (x,) -t |} and the resulting histogram is cal cul ated
as

[E/N N 20,
_{ ON, =0.

If pointer to the mask isNULL, the histogram is calculated for the all image pixels.
Otherwise only those pixels are considered that have non-zero value in the mask in the
corresponding position.

Pyramid Data Types

The pyramid functions use the data structure | pl | mage for image representation and
the data structure CvSeq for the sequence of the connected components representation.
Every element of this sequence is the data structure CvConnect edConp for the single
connected component representation in memory.

The C language definition for the CvConnect edConp structure is given below.

Example 10-1 CvConnect edConp

typedef struct CvConnect edConp

doubl e areas; /* area of the segmented
conponent */

fl oat val ue; /* gray scale value of the
segnent ed conponent */

CvRect rect; /* RA of the segnmented conponent

} CvConnect edConp;

u
intgl. 1056

OpenCV Reference Manual

Image Analysis Reference 10

Histogram Data Types

Example 10-2 CvHi st ogram

typedef struct CvHi stogram

i nt header _si ze; /* header's size */
CvH st Type type; /* type of histogram */
i nt fl ags; /* histogram s flags */
i nt c_di ms; /* histogram s di mension */
i nt di ns[CV_HI ST_MAX DI M ;
/* every dinension size */
i nt mdi ms[CV_HI ST_MAX DI M ;
/* coefficients for fast
access to el ement */
/* & a,b,c] = m+ a*nmdins[0] +
b*mdi ns[1] + c*ndins[2] */
float* thresh[CV_H ST_MAX DIM;
/* bin boundaries arrays for every
di mensi on */
float* array; /* all the histogram data, expanded into
the single row */
struct CvNode* root; /* tree — histogramdata */
CvSet * set; [/* pointer to nmenory storage
(for tree data) */
int* chdins[CV_H ST_MAX DIM;

/* cache data for fast calculating */

} CvHi st ogram

10-57

OpenCV Reference Manual Image Analysis Reference 10

u
intgl. 10.58

Sructural Analysis

Reference

Table 11-1 Structural Analysis Functions

Group

Name

Description

Contour Processing

Functions

Functions

Appr oxChai ns

St ar t ReadChai nPoi nt s

ReadChai nPoi nt

Appr oxPol y

Dr awCont our s

Cont our Boundi ngRect

Cont our sMonent s

Cont our Ar ea

Approximates Freeman
chain(s) with a
polygonal curve.

Initializes the chain
reader.

Returns the current
chain point and moves
to the next point.

Approximates one or
more contours with
desired precision.

Draws contour outlines
in the image.

Calculates the bounding
box of the contour.

Calculates
unnormalized spatial
and central moments of
the contour up to order
3.

Calculates the region
area within the contour
or contour section.

111

OpenCV Reference Manual Structural Analysis Reference 11

Table 11-1 Structural Analysis Functions (continued)

Group Name Description

Mat chCont our s Calculates one of the
three similarity
measures between two
contours.

Cr eat eCont our Tr ee Creates binary tree
representation for the
input contour and
returns the pointer to its

root.

Cont our Fr omCont our Tr ee Restores the contour
from its binary tree
representation.

Mat chCont our Tr ees Calculates the value of

the matching measure
for two contour trees.

Geometry Functions FitEl lipse Fits an ellipse to a set of
2D points.
FitLi ne2D Fits a 2D line to a set of
points on the plane.
FitLi ne3D Fits a 3D line to a set of

points on the plane.

Proj ect 3D Provides a general way
of projecting a set of 3D
points to a 2D plane.

ConvexHul | Finds the convex hull of
a set of points.

Cont our ConvexHul | Finds the convex hull of
a set of points returning
cvSeq.

ConvexHul | Appr ox Finds approximate
convex hull of a set of
points.

Cont our ConvexHul | Appr ox Finds approximate
convex hull of a set of
points returning
cvSeq.

u
intgl. 12

OpenCV Reference Manual Structural Analysis Reference 11

Table 11-1 Structural Analysis Functions (continued)

Group Name Description

CheckCont our Convexity Tests whether the input
is a contour convex or
not.

Convexi tyDef ects Finds all convexity
defects of the input
contour.

M nAr eaRect Finds a circumscribed

rectangle of the minimal
area for a given convex
contour.

Cal cPGH Calculates a pair-wise
geometrical histogram
for the contour.

M nEncl osingCircl e Finds the minimal
enclosing circle for the
planar point set.

Data Types
Contour Processing Data CvCont our Tr ee Represents the contour
Types binary tree in memory.
Geometry Data Types CvConvexi t yDef ect Represents the

convexity defect.

Contour Processing Functions

ApproxChains

Approximates Freeman chain(s) with polygonal
curve.

CvSeqg* cvApproxChai ns(CvSeq* srcSeq, CvMentt or age* st orage,
CvChai nAppr oxMet hod nmet hod=CV_CHAI N_APPROX_SI MPLE,
fl oat paraneter=0,int m nimal Perimeter=0,
int recursive=0);

u
intgl. 113

OpenCV Reference Manual Structural Analysis Reference 11

srcSeq Pointer to the chain that can refer to other chains.

storage Storage location for the resulting polylines.

met hod Approximation method (see the description of the function
Fi ndCont our s).

par anet er Method parameter (not used now).

m ni mal Peri net er Approximates only those contours whose perimeters are not

less than ni ni mal Peri net er. Other chains are removed
from the resulting structure.

recursive If not O, the function approximates al chains
that access can be obtained to from sr cSeq by h_next or
v_next links. If O, the single chain is approximated.

Discussion

Thisis a stand-alone approximation routine. The function Appr oxChai ns works
exactly in the same way asthe functions Fi ndCont our s / Fi ndNext Cont our with the
corresponding approximation flag. The function returns pointer to the first

resultant contour. Other contours, if any, can be accessed viav_next or h_next fields
of the returned structure.

StartReadChainPoints

Initializes chain reader.

voi d cvSt art ReadChai nPoi nts(CvChai n* chai n, CvChai nPt Reader* reader);

chain Pointer to chain.
r eader Chain reader state.
Discussion

The function St art ReadChai nPoi nt s initializes a special reader (see Dynamic Data
Structures for more information on sets and sequences).

11-4

OpenCV Reference Manual

Sructural Analysis Reference 11

ReadChainPoint

Gets next chain point.

CvPoi nt cvReadChai nPoi nt (CvChai nPt Reader* reader);

r eader

Discussion

Chain reader state.

The function ReadChai nPoi nt returns the current chain point and moves to the next

point.

ApproxPoly

Approximates polygonal contour(s) with desired

precision.

CvSeq* cvApproxPol y(CvSeq* srcSeq, i nt header Si ze, CvMentt or age* st or age,
CvPol yAppr oxMet hod met hod, float paraneter,int recursive=0);

srcSeq
header Si ze
st orage

met hod

par amet er

recursive

Pointer to the contour that can refer to other chains.
Size of the header for resulting sequences.
Resulting contour storage location.

Approximation method; only cv_PQOLY_APPROX_DP issupported, that
corresponds to Dougl as-Peucker method.

M ethod-specific parameter; a desired precision for
CV_POLY_APPROX_DFP.
If not O, the function approximates all contours that can be accessed

from sr cSeq by h_next or v_next links. If O, the single contour is
approximated.

11-5

OpenCV Reference Manual Structural Analysis Reference 11

Discussion

The function Appr oxPol y approximates one or more contours and returns
pointer to the first resultant contour. Other contours, if any, can be accessed viav_next
or h_next fields of the returned structure.

DrawContours
Draws contours in image.

voi d cvDrawContours(Ipllnage *ing, CvSeq* contour, int external Color, int

hol eCol or, int maxLevel, int thickness=1);
i mg Image where the contours are to be drawn. Like in any other
drawing function, every output is clipped with the ROI.
cont our Pointer to the first contour.
ext er nal Col or Color to draw external contours with.
hol eCol or Color to draw holes with.
maxLevel Maximal level for drawn contours. If O, only the contour is

drawn. If 1, the contour and all contours after it on the same
level aredrawn. If 2, all contours after and all contours one
level below the contours are drawn, etc.

t hi ckness Thickness of lines the contours are drawn with.

Discussion

The function Dr awCont our s draws contour outlinesin theimage if the thickness
ispositive or zero or fills area bounded by the contours if thickness is negative, for
example, if t hi ckness==CV_FI LLED.

u
intgl. 116

OpenCV Reference Manual Structural Analysis Reference 11

ContourBoundingRect
Calculates bounding box of contour.

CvRect* rect cvContourBoundi ngRect (CvSeg* contour, int update);

cont our Pointer to the source contour.
updat e Attribute of the bounding rectangle updating.
Discussion

The function Cont our Boundi ngRect returns the bounding box parameters, that is,
co-ordinates of the top-left corner, width, and height, of the source contour as
Figure 11-1 shows. If the parameter updat e is not equal to O, the parameters of the
bounding box are updated.

Figure 11-1 Bounding Box Parameters

(X,y)

Height

v

/
N

Width

L}
intel.

OpenCV Reference Manual Structural Analysis Reference 11

ContoursMoments
Calculates contour moments up to order 3.

voi d cvCont our sMonent s(CvSeq* cont our, CvMonents* nonents);

cont our Pointer to the input contour header.

nmoment s Pointer to the output structure of contour moments; must be allocated
by the caller.

Discussion

The function Cont our sMorent s calculates unnormalized spatial and central moments
of the contour up to order 3.

ContourArea

Calculates region area inside contour or contour
section.

doubl e cvCont our SecAr ea(CvSeq* contour, CvSlice slice=CV_WHOLE_SEQseq));

cont our Pointer to the input contour header.
slice Starting and ending points of the contour section of interest.
Discussion

Thefunction Cont our SecAr ea calculatesthe region areawithin the contour consisting
of n pointsp;, = (x;,y;), 0<i <n, p, = p,,, 8Saspatial moment:

n
Ogo = 172" X; _q¥i =X ¥ _1-
=1

u
intgl. 11

OpenCV Reference Manual Structural Analysis Reference 11

If apart of the contour is selected and the chord, connecting ending points,
intersects the contour in severa places, then the sum of all subsection areasis
calculated. If the input contour has points of self-intersection, the region areawithin
the contour may be cal culated incorrectly.

MatchContours
Matches two contours.

doubl e cvMat chContours (CvSeq *contourl, CvSeq* contour2,int nethod, |ong
paraneter=0);

contourl Pointer to the first input contour header.

contour 2 Pointer to the second input contour header.

par amet er M ethod-specific parameter, currently ignored.

met hod Method for the similarity measure calculation; must be any of

* CV_CONTOURS NMATCH | 1;
* CV_CONTOURS NMATCH | 2;
* CV_CONTOURS NMATCH | 3.

Discussion

The function Mat chCont our s calculates one of the three similarity measures between
two contours.

Let two closed contours A and B have n and mpoints respectively:

A= {(x;,y;),1<i <n} B = {(u;,v;), 1<i <m}.Normalized central moments of a
contour may be denoted as n,,,, 0<p +q<3. M. Hu has shown that a set of the next
seven features derived from the second and third moments of contoursis an invariant
to translation, rotation, and scale change [Hu62].

hy = Mg+ Moy »

2. 2
hy = (My—Mg) +4N7;

u
intgl. 119

OpenCV Reference Manual Structural Analysis Reference 11

hg = (Mg=3n12)" + (3N ~Ngy)”

hy = Mg+ Np) >+ (Mg +Mgg)”

hs = (N30—3N12)(Mgg*+ N12)[(Na0 + N1p)° = 3Ny + M)]

+ (3N~ MNgg) (Mg *+ Ngg)[BMNap + M) = (Mg + Mg’ T,

hg = (20 =Mool (Mo * N12) (Mg + M) T+ 4N y3 (M + M12) (Mg + o)
hy = (3N5-TM0g) (Mg + N1p)[(Mag + N12)° = 3(Mpy +Ngg)’]
+—(n30—3n12)(n21+n03)[3(n30+n12)2—(n21 +.n03)2]-

From these seven invariant features the three similarity measures| 4, 1 ,, and | ; may be
caculated: |

1A B) = 3 |-/nf+ 1/nf],
i =1
7
| oA B) = Y -],
i =1
| (A B) = miax‘(rqA—rqB)/rqA ,

where nf* = sgn(hﬁ)lol%‘hﬂ = sgn(h:a)lol%‘hﬂ .

CreateContourTree

Creates binary tree representation for input
contour.

CvCont our Tree* cvCreateContourTree(CvSeq *contour, CvMenStorage* storage,
doubl e threshol d);

cont our Pointer to the input contour header.
st orage Pointer to the storage block.
t hreshol d Value of the threshold.

u
intel. 1110

OpenCV Reference Manual Structural Analysis Reference 11

Discussion

The function Cr eat eCont our Tree creates binary tree representation for the input
contour cont our and returnsthe pointer to itsroot. If the parameter t hr eshol d isless
than or equal to O, the function createsfull binary tree representation. If the threshold is
more than O, the function creates representation with the precisiont hreshol d: if the
vertices with the interceptive area of its base line are less thant hr eshol d, the tree
should not be built any further. The function returns created tree.

ContourFromContourTree
Restores contour from binary tree representation.

CvSeqg* cvCont our FronCont our Tree (CvContour Tree *tree, CvMenttorage* storage,
CvTernCriteria criteria);

tree Pointer to the input tree.
st orage Pointer to the storage block.
criteria Criteriafor the definition of the threshold value

for contour reconstruction (level of precision).

Discussion

The function Cont our Fr onCont our Tr ee restores the contour from its binary tree
representation. The parameter cri t eri on defines the threshold, that is, level of
precision for the contour restoring. If criterion.type = CV_TERMCR T_| TER, the
function restorescriterion. maxlter treelevels. If criterion.type =
CV_TERMCRI T_EPS, the function restores the contour aslong astri _ar ea >
criterion. epsilon *contour_area, Wherecont our _ar ea isthe magnitude of the
contour areaand t ri _ar ea iSsthe magnitude of the current triangle area. If
criterion.type= CV_TERMCRI T_EPS + CV_TERMCRI T_I TER, the function restores
the contour as long as one of these conditions is true. The function returns
reconstructed contour.

11-11

OpenCV Reference Manual Structural Analysis Reference 11

MatchContourTrees
Compares two binary tree representations.

doubl e cviat chCont our Trees (CvContourTree *treel, CvContourTree *tree2,
CvTr eeMat chMet hod net hod, doubl e threshol d);

treel Pointer to the first input tree.

tree2 Pointer to the second input tree.

met hod Method for calculation of the similarity measure; now must be only
CV_CONTOUR_TREES_MATCH | 1.

t hreshol d Value of the compared threshol d.

Discussion

The function Mat chCont our Tr ees calculates the value of the matching measure for
two contour trees. The similarity measure is calculated level by level from the binary
treeroots. If the total calculating value of the similarity for levelsfrom O to the
specified one is more than the parameter t hr eshol d, the function stops cal culations
and value of the total similarity measure isreturned asr esul t . If the total calculating
value of the similarity for levelsfrom O to the specified oneis less than or equal to

t hr eshol d, the function continues calculation on the next tree level and returns the
value of the total similarity measure for the binary trees.

Geometry Functions

FitEllipse
Fits ellipse to set of 2D points.

void cvFitEl |lipse(CvPoint* points, int n, CvBox2D32f* box);
poi nt s Pointer to the set of 2D points.

u
intgl. 1112

OpenCV Reference Manual

Sructural Analysis Reference 11

n

box

Discussion

Number of points; must be more than or equal to 6.
Pointer to the structure for representation of the output ellipse.

ThefunctionFi t El 1i pse fillsthe output structure in the following way:

box—cent er
box—si ze

box—angl e

Point of the center of the ellipse;
Sizes of two ellipse axes;

Angle between the horizontal axisand the ellipse axis with the length
of box- >si ze. wi dt h.

The output ellipse has the property of box—si ze. wi dt h > box—si ze. hei ght .

FitLine2D
Fits 2D line to set of points on the plane.

voi d cvFitLi ne2D (CvPoi nt 2D32f * points, int count, CvDi sType di sType, voi d*
param float reps,

poi nts
count
di sType

param

reps, aeps

l'ine

fl oat aeps, float* line);

Array of 2D points.

Number of points.

Type of the distance used to fit the datato aline.

Pointer to a user-defined function that cal culates the weights for the
type CV_DI ST_USER, or the pointer to afloat user-defined metric
parameter c for the Fair and Welsch distance types.

Used for iteration stop criteria. If zero, the default value of 0.01 is
used.

Pointer to the array of four floats. When the function exits, the first

two elements contain the direction vector of the line normalizedto 1,
the other two contain coordinates of a point that belongs to the line.

11-13

OpenCV Reference Manual Structural Analysis Reference 11

Discussion

ThefunctionFi t Li ne2D fitsa2D lineto a set of points on the plane. Possible distance
type values are listed bel ow.

CV_DI ST L2 Standard least squaresp(x) = x°.

CV_DI ST L1

CV_DIST_L12

CV_DI ST_FAIR c :1.39928.

CV_Di ST WELSCH 0(x) = %[1—exp(—(§2ﬂ, ¢ = 2.9846.

CV_DI ST_USER Uses a user-defined function to calculate the weight. The

parameter par amshould point to the function.

ThelineequationiS[*/x(?—a)] = 0, where= (I i ne[0],1i ne[1],] i ne[; V = 1 and
= (line[3],line[4],]ine[.

In thisalgorithm 70 isthe mean of the input vectors with weights, that is,
SWd(r)

o~ _ =
> Wd(r;))

The parametersr eps and aeps are iteration thresholds. If the distance of the type
CV_DI ST_C between two values of r, calculated from two iterations is less than the
value of the parameter r eps and the angle in radians between two vectors V isless
than the parameter aeps, then theiteration is stopped.

The specification for the user-defined weight function is
voi d userWeight (float* dist, int count, float* w);

di st Pointer to the array of distance values.

count Number of elements.

w Pointer to the output array of weights.

The function should fill the weights array with values of weights cal culated from the

distancevaluesi] = f (d[i 1. Thefunction' (x) = %% has to be monotone decreasing.
intel. 114

OpenCV Reference Manual

Sructural Analysis Reference 11

FitLine3D
Fits 3D lineto set of pointsin 3D space.

voi d cvFitLi ne3D (CvPoi nt3D32f* points, int count, CvDi sType disType, void*
param float reps,

poi nts
count

di sType
par am

reps, aeps

l'ine

Discussion

fl oat aeps, float* |ine);

Array of 3D points.

Number of points.

Type of the distance used to fit the datato aline.

Pointer to a user-defined function that cal culates the weights for the
type Cv_DI ST_USER or the pointer to a float user-defined metric
parameter c for the Fair and Welsch distance types.

Used for iteration stop criteria. If zero, the default value of 0.01 is
used.

Pointer to the array of 6 floats. When the function exits, the first
three elements contain the direction vector of the line normalized to
1, the other three contain coordinates of a point that belongs to the
line.

ThefunctionFi t Li ne3D fitsa3D lineto a set of points on the plane. Possible distance
type values are listed bel ow.

CV_DI ST L2
CV_ DI ST L1
CV_DI ST L12
CV_DI ST_FAIR
CV_DI ST_WELSCH
CV_DI ST_USER

Standard least squaresp(x) = x>.

c =1.3998.

2
_c X -
o) = S1-en(-(2)7)] ¢ = 2.9846.
Uses a user-defined function to calculate the weight. The
parameter par amshould point to the function.

11-15

OpenCV Reference Manual Structural Analysis Reference 11

ThelineequationiS[*/x(?—rT))] = 0, where= (1 i ne[0],1i ne[1],!i ne[; V = 1 and
= (line[3],line[4],]ine[.

In thisalgorithm 70 isthe mean of the input vectors with weights, that is,

WA)T

0

SWd(r))

The parametersr eps and aeps areiteration thresholds. If the distance between two
valuesof r, calculated from two iterationsislessthan thevalue of the parameter r eps,
(the distance type cv_bDI ST_C isused in this case) and the angle in radians between
two vectors V is less than the parameter aeps, then the iteration is stopped.

The specification for the user-defined weight function is
voi d userWeight (float* dist, int count, float* w);

di st Pointer to the array of distance values.
count Number of elements.
w Pointer to the output array of weights.

The function should fill the weights array with values of weights calculated from
distancevaluesi] = f (d[i 1. Thefunction® (x) = %% has to be monotone decreasing.

Project3D

Projects array of 3D pointsto coordinate axis.

voi d cvProject3D (CvPoi nt 3D32f* points3D, int count, CvPoint2D32f* poi nts2D,

int xindx, int yindx);
poi nt s3D Source array of 3D points.
count Number of points.
poi nt s2D Target array of 2D points.
xi ndx Index of the 3D coordinate from O to 2 that is to be used as
x-coordinate.
intel. 1116

OpenCV Reference Manual Structural Analysis Reference 11

yi ndx Index of the 3D coordinate from O to 2 that isto be used as
y-coordinate.

Discussion

The function Pr oj ect 3D used with the function Per specti vePr oj ect isintended to
provide ageneral way of projecting a set of 3D pointsto a 2D plane. The function
copies two of the three coordinates specified by the parametersxi ndx and yi ndx of
each 3D point to a 2D points array.

ConvexHull
Finds convex hull of points set.

voi d cvConvexHul | (CvPoi nt* points, int numPoints, CvRect* boundRect, int

orientation, int* hull, int* hullsize);
poi nt's Pointer to the set of 2D points.
nunPoi nt s Number of points.
boundRect Pointer to the bounding rectangle of points set; not used.

orientation Output order of the convex hull vertices Cv_CLOCKW SE or
CV_COUNTER_CL OCKW SE.

hul | Indices of convex hull vertices in the input array.
hul | si ze Number of verticesin convex hull; output parameter.
Discussion

The function ConvexHul | takes an array of points and puts out indices of points that
are convex hull vertices. The function uses Quicksort algorithm for points sorting.

The standard, that is, bottom-left Xy coordinate system, is used to define the order in
which the vertices appear in the output array.

u
intgl. 1117

OpenCV Reference Manual Structural Analysis Reference 11

ContourConvexHull
Finds convex hull of points set.

CvSeqg* cvCont our ConvexHul | (CvSeqg* contour, int orientation,
CvMentt orage* storage);

cont our Sequence of 2D points.

orientation Output order of the convex hull vertices Cv_CLOCKW SE or
CV_COUNTER_CL OCKW SE.

storage Memory storage where the convex hull must be allocated.

Discussion

The function Cont our ConvexHul | takes an array of points and puts out indices of
points that are convex hull vertices. The function uses Quicksort algorithm for points
sorting.

The standard, that is, bottom-left Xy coordinate system, defines the order in which the
vertices appear in the output array.

The function returnscvSeq that isfilled with pointers to those points of the source
contour that belong to the convex hull.

ConvexHullApprox

Finds approximate convex hull of points set.

voi d cvConvexHul | Approx(CvPoint* points, int numPoints, CvRect* boundRect,

int bandWdth,int orientation, int* hull, int* hullsize);
poi nt's Pointer to the set of 2D points.
nunPoi nt s Number of points.
boundRect Pointer to the bounding rectangle of points set; not used.

bandW dt h Width of band used by the algorithm.

u
intel. 1118

OpenCV Reference Manual

Sructural Analysis Reference 11

orientation

Output order of the convex hull vertices cv_CLOCKW SE or
CV_COUNTER_CLOCKW SE.

hul | Indices of convex hull vertices in the input array.

hul | si ze

Discussion

Number of verticesin the convex hull; output parameter.

The function ConvexHul | Appr ox finds approximate convex hull of points set. The

following algorithm is used:

1. Dividethe planeinto vertical bands of specified width, starting from the

extreme left point of the input set.

2. Find points with maximal and minimal vertical coordinates within each band.

3. Exclude all the other points.

4. Find the exact convex hull of all the remaining points (see Figure 11-2).

Figure 11-2 Finding Approximate Convex Hull

The algorithm can be used to find the exact convex hull; the value of the parameter

bandwi dt h must then be equal to 1.

intel.

11-19

OpenCV Reference Manual Structural Analysis Reference 11

ContourConvexHullApprox
Finds approximate convex hull of points set.

CvSeqg* cvCont our ConvexHul | Approx(CvSeqg* contour, int bandw dth, int
orientation, CvMenttorage* storage);

cont our Sequence of 2D points.
bandwi dt h Bandwidth used by the algorithm.

orientation Output order of the convex hull vertices Cv_CLOCKW SE or
CV_COUNTER_CLOCKW SE.

storage Memory storage where the convex hull must be allocated.

Discussion

The function Cont our ConvexHul | Appr ox finds approximate convex hull of points set.
The following algorithm is used:

1. Dividethe planeinto vertical bands of specified width, starting from the
extreme left point of the input set.

2. Find points with maximal and minimal vertical coordinates within each band.
3. Exclude all the other points.
4. Find the exact convex hull of all the remaining points (see Figure 11-2)

In case of points with integer coordinates, the algorithm can be used to find the exact
convex hull; the value of the parameter bandwi dt h must then be equal to 1.

The function Cont our ConvexHul | Appr ox returns CvSeq that isfilled with pointersto
those points of the source contour that belong to the approximate convex hull.

u
intel. 1120

OpenCV Reference Manual Structural Analysis Reference 11

CheckContourConvexity
Tests contour convex.

i nt cvCheckContour Convexity(CvSeq* contour);
cont our Tested contour.
Discussion

The function CheckCont our Convexi t y tests whether the input is a contour convex or
not. The function returns 1 if the contour is convex, 0 otherwise.

ConvexityDefects
Finds defects of convexity of contour.

CvSeqg* cvConvexityDefects(CvSeq* contour, CvSeg* convexhull, CvMenStorage*

storage);
cont our Input contour, represented by a sequence of CvPoi nt structures.
convexhul | Exact convex hull of the input contour; must be computed by the
function cvCont our ConvexHul | .
st orage Memory storage where the sequence of convexity defects must be
allocated.
Discussion

The function Convexi t yDef ect s finds all convexity defects of the input contour and
returns a sequence of the CvConvexi t yDef ect structures.

u
intgl. 121

OpenCV Reference Manual Structural Analysis Reference 11

MinAreaRect

Finds circumscribed rectangle of minimal area
for given convex contour.

void cvM nAreaRect (CvPoint* points, int n, int left, int bottom int right,
int top, CvPoint2D32f* anchor, CvPoint2D32f* vectl, CvPoint2D32f* vect2);

poi nt s Sequence of convex polygon points.

n Number of input points.

| eft Index of the extreme left point.

bott om Index of the extreme bottom point.

ri ght Index of the extreme right point.

top Index of the extreme top point.

anchor Pointer to one of the output rectangle corners.

vect1 Pointer to the vector that represents one side of the output rectangle.

vect 2 Pointer to the vector that represents another side of the output
rectangle.

u
intgl. 122

OpenCV Reference Manual Structural Analysis Reference 11

Discussion

Thefunction M nAr eaRect returns a circumscribed rectangle of the minimal area. The
output parameters of this function are the corner of the rectangle and two incident
edges of the rectangle (see Figure 11-3).

Figure 11-3 Minimal Area Bounding Rectangle

CalcPGH

Calculates pair-wise geometrical histogram for
contour.

voi d cvCal cPGH(CvSeg* contour, CvHi stogranmt hist);

cont our Input contour.
hi st Calculated histogram; must be two-dimensional.
Discussion

The function Cal cPGH calculates a pair-wise geometrical histogram for the contour.
The algorithm considers every pair of the contour edges. The angle between the edges
and the minimum/maximum distances are determined for every pair. To do this each of
the edgesin turn is taken as the base, while the function loops through all the other
edges. When the base edge and any other edge are considered, the minimum and

u
intel. 1123

OpenCV Reference Manual Structural Analysis Reference 11

maximum distances from the points on the non-base edge and line of the base edge are
selected. The angle between the edges defines the row of the histogram in which all the
bins that correspond to the distance between the cal culated minimum and maximum
distances are incremented. The histogram can be used for contour matching.

MinEnclosingCircle
Finds minimal enclosing circle for 2D-point set.

voi d cvFi ndM nEncl osi ngCi rcl e(CvSeq* seq, CvPoint2D32f* center, float* radius
)

seq Sequence that contains the input point set. Only points with integer
coordinates (CvPoi nt) are supported.

center Output parameter. The center of the enclosing circle.

radi us Output parameter. The radius of the enclosing circle.

Discussion

The function Fi ndM nEncl osi ngGi r cl e finds the minimal enclosing circle for the
planar point set. Enclosing meansthat all the points from the set are either inside or on
the boundary of the circle. Minimal means that there is no enclosing circle of asmaller
radius.

Contour Processing Data Types

The OpenCV Library functions use special data structuresto represent the contours
and contour binary treein memory, namely the structures CvSeq and CvCont our Tr ee.
Below follows the definition of the structure CvCont our Tr ee in the C language.

Example 11-1 CvCont our Tree

typedef struct CvContourTree
{ CV_SEQUENCE_FI ELDS()

CvPoi nt pl; /*the start point of the binary tree
root */
CvPoi nt p2; /*the end point of the binary tree

L}
intel.

OpenCV Reference Manual

Sructural Analysis Reference 11

Example 11-1 CvCont our Tree (continued)

root*/
} CvCont our Tree;
Geometry Data Types
Example 11-2 CvConvexi t yDef ect
typedef struct
{
CvPoi nt* start; //start point of defect
CvPoi nt* end; /1 end point of defect
CvPoi nt* depth_point; //fathernost point
fl oat dept h; // dept h of defect

} CvConvexityDefect;

11-25

OpenCV Reference Manual Structural Analysis Reference 11

u
intel. 1126

Object Recognition

Re

‘erence

Table 12-1

Image Recognition Functions and Data Types

Group

Function Name

Description

Eigen Objects Functions

Functions
Cal cCovar Mat ri xEx

Cal cEi gen(Obj ect s

Cal cDecompCoef f

Ei genDeconposite

Ei genProj ection

Calculates a covariance
matrix of the input
objects group using
previously calculated
averaged object.

Calculates orthonormal
eigen basis and the
averaged object for a
group of the input
objects.

Calculates one
decomposition
coefficient of the input
object using the
previously calculated
eigen object and the
averaged object.

Calculates all
decomposition
coefficients for the input
object.

Calculates an object
projection to the eigen
sub-space.

12-1

OpenCV Reference Manual

Object Recognition Reference 12

Table 12-1 Image Recognition Functions and Data Types (continued)

Group Function Name Description
Embedded Hidden Markov Cr eat e2DHW Creates a 2D embedded
Models Functions HMM.
Rel ease2DHW Frees all the memory
used by HMM.

Creat eObsl nfo

Rel easebsl| nfo

| ngToCbs_DCT

Uni f or nl ngSegm

[ni tM xSegm

Esti mat eHMVSt at ePar ans

Esti mat eTr ansProb

Esti mat eObsPr ob

Creates new structures
to store image
observation vectors.

Frees all memory used
by observations and
clears pointer to the
structure

Cvl ngObsl nf o.

Extracts observation
vectors from the image.

Performs uniform
segmentation of image
observations by HMM
states.

Segments all
observations within
every internal state
of HMM by state mixture
components.

Estimates all
parameters of every
HMM state.

Computes transition
probability matrices for
embedded HMM.

Computes probability of
every observation of
several images.

EVi ter bi Executes Viterbi
algorithm for embedded
HMM.
L}
intgl. 122

OpenCV Reference Manual

Object Recognition Reference 12

Table 12-1 Image Recognition Functions and Data Types (continued)

Group

Function Name

Description

Use of Eigen Object

Functions

HMM Structures

M xSegnl2

Data Types
Use of Function

cvCal cEi genhj ect s_in Direct

Access Mode

User Data Structure, 1/0 Callback

Functions, and Use of Function
cvCal cEi genhj ect s in
Callback Mode

Embedded HMM Structure

Image Observation Structure

Segments observations
from all training images
by mixture components
of newly Viterbi
algorithm-assigned
states.

Shows the use of the
function when the size
of free RAM is sufficient
for all input and eigen
objects allocation.

Shows the use of the
function when all objects
and/or eigen objects
cannot be allocated in
free RAM.

Represents 1D HMM
and 2D embedded HMM
models.

Represents image
observations.

Eigen Objects Functions

CalcCovarMatrixEx

Calculates covariance matrix for group of input

objects.

voi d cvCal cCovar Mat ri XEx(
i oBuf Si ze, uchar* buffer,

covarMatrix);

int nObjects, void* input, int
voi d* userData, |pllnmge* avg,

i oFl ags, int

float*

intel.

12-3

Object Recognition Reference 12

OpenCV Reference Manual

nbj ects Number of source objects.

i nput Pointer either to the array of I pl I mage input objects or to the read
callback function according to the value of the parameter i oFl ags.

i oFl ags Input/output flags.

i oBuf Si ze Input/output buffer size.

buf f er Pointer to the input/output buffer.

user Dat a Pointer to the structure that contains all necessary data for the
callback functions.

avg Averaged object.

covar Matri x

Discussion

Covariance matrix. An output parameter; must be allocated before
the call.

The function Cal cCovar Mat ri xEx calculates a covariance matrix of the input objects
group using previoudly calculated averaged object. Depending oni oFl ags parameter
it may be used either in direct access or callback mode. If i oFl ags isnot

CV_EI GOBJ_NO_CALLBACK, buffer must be allocated before calling the function.

CalcEigenObjects

Calculates orthonormal eigen basisand
averaged object for group of input objects.

voi d cvCal cEi genObj ects (int nObjects, void* input, void* output, int ioFlags,

int ioBufsSize,
fl oat* eigVals;

nObj ect's

i nput

out put

voi d* userData, CvTernmCriteria* calcLinmt, Ipllnmge* avg,

Number of source objects.

Pointer either to the array of 1 pl I mage input objects or to the read
callback function according to the value of the parameter i oFl ags.

Pointer either to the array of eigen objects or to the write callback
function according to the value of the parameter i oFl ags.

intel.

12-4

OpenCV Reference Manual Object Recognition Reference 12

i oFl ags Input/output flags.

i oBuf Si ze Input/output buffer size in bytes. The size is zero, if unknown.

user Dat a Pointer to the structure that contains all necessary datafor the
callback functions.

cal cLimt Criteria that determine when to stop calculation of eigen objects.

avg Averaged object.

ei gval s Pointer to the eigenvalues array in the descending order; may be
NULL.

Discussion

Thefunction Cal cEi genObj ect s calculates orthonormal eigen basis and the averaged
object for agroup of the input objects. Depending oni oFl ags parameter it may be
used either in direct access or callback mode. Depending on the parameter cal cLimi t,
calculations are finished either after first cal cLi i t . maxl t er s dominating eigen
objects are retrieved or if the ratio of the current eigenvalue to the largest eigenvalue
comesdowntocal cLimt. epsil on threshold. The valuecal cLi ni t - >t ype must be
CV_TERMCRI T_NUMB, CV_TERMCRI T_EPS, or CV_TERMCRI T_NUMB | CV_TERMCRI T_EPS.
The function returnsthe real valuescal cLi mi t - >maxl ter and cal cLinit->epsil on.

The function also calcul ates the averaged object, which must be created previously.
Calculated eigen objects are arranged according to the corresponding eigenvalues in
the descending order.

The parameter ei gval s may be equal to NULL, if eigenvalues are not needed.

The function Cal cEi genObj ects usesthe functionCal cCovar Mat ri xEx.

CalcDecompCoeff

Calculates decomposition coefficient of input
object.

doubl e cvCal cDeconpCoeff (Ipllnmage* obj, I|pllmge* eiglj, |pllmge* avg);

u
intgl. 125

OpenCV Reference Manual Object Recognition Reference 12

obj Input object.

ei gQbj Eigen object.
avg Averaged object.
Discussion

Thefunction Cal cDeconpCoef f calculates one decomposition coefficient of the input
object using the previously calculated eigen object and the averaged object.

EigenDecomposite
Calculates all decomposition coefficients for

input object.
voi d cvEi genDeconmposite(|Ipllmage* obj, int nEi gObjs, void* eiglnput, int
i oFl ags, void* userData, |pllmge* avg, float* coeffs);
obj Input object.
nEi gObj s Number of eigen objects.
ei gl nput Pointer either to the array of I pl I mage input objects or to the read
callback function according to the value of the parameter i oFl ags.
i oFl ags Input/output flags.
user Dat a Pointer to the structure that contains all necessary data for the
callback functions.
avg Averaged object.
coeffs Calculated coefficients; an output parameter.
Discussion

The function Ei genDeconposi te calculates all decomposition coefficients for the
input object using the previously calculated eigen objects basis and the averaged
object. Depending oni oFl ags parameter it may be used either in direct access or
callback mode.

u
intgl. 126

OpenCV Reference Manual Object Recognition Reference 12

EigenProjection

Calculates object projection to the eigen
sub-space.

voi d cvEi genProjection (int nEigObjs, void* eiglnput, int ioFlags, void*

user

Data, float* coeffs, Ipllmge* avg, |pllnmge* proj);

nEi gObj s Number of eigen objects.

ei gl nput Pointer either to the array of 1 pl I mage input objects or to the read
callback function according to the value of the parameter i oFl ags.

i oFl ags Input/output flags.

user Dat a Pointer to the structure that contains all necessary data for the
callback functions.

coeffs Previously calculated decomposition coefficients.

avg Averaged object.

pr oj Decomposed object projection to the eigen sub-space.

Discussion

Thefunction Ei genPr oj ect i on calculates an object projection to the eigen sub-space
or, in other words, restores an object using previously calculated eigen objects basis,
averaged object, and decomposition coefficients of the restored object. Depending on
i oFl ags parameter it may be used either in direct access or callback mode.

Use of Eigen Object Functions

The functions of the eigen objects group have been devel oped to be used for any
number of objects, even if their total size exceeds free RAM size. So the functions may
be used in two main modes.

Direct access mode is the best choice if the size of free RAM is sufficient for all input
and eigen objects allocation. This mode is set if the parameter i oFl ags isequal to
CV_EI GOBJ_NO_CALLBACK. Inthiscasei nput and out put parameters are pointers to

12-7

OpenCV Reference Manual Object Recognition Reference 12

arrays of input/output objects of | pl | mage* type. The parametersi oBuf Si ze and
user Dat a are not used. An example of the function Cal cEi genQbj ect s used in direct
access mode is given bel ow.

Example 12-1 Use of Function cvCal cEi genObj ect s in Direct Access Mode

| pl | mage** obj ects;
I pl I mge** ei genCbj ects;
| pl | mage* avg;

fl oat* ei gVval s;

CvSi ze size = cvSize(nx, ny);

if(!'(eigvals = (float*) cvAlloc(nObjects*sizeof(float))))
__ERROR EXIT__;

if('(avg = cvCreatel mage(size, |PL_DEPTH 32F, 1)))
_ERROR EXIT__;

for(1=0; i< nChjects; i++)

objects[i] = cvCreatel mage(size, |IPL_DEPTH 8U, 1);
ei genObj ects[i] = cvCreatel mage(size, |PL_DEPTH 32F, 1);
if(!'(objects[i] & eigenOhjects[i]))

_ ERROR EXIT__;

}
chaI cEi thdoj 'ec't s' (' n'Oo'j e'ct's,'
(voi d*) obj ect s,
(voi d*) ei genObj ect s,
CV_EI GOBJ_NO_CALLBACK,
0,
NULL,
calcLimt,
avg,
eigval s);

The callback mode is the right choice in case when the number and the size of objects
are large, which happens when all objects and/or eigen objects cannot be allocated in
free RAM. In this case input/output information may be read/written and devel oped by
portions. Such regimeis called callback mode and is set by the parameter i oFl ags.
Three kinds of the callback mode may be set:

| oFl ag = CV_EI GOBJ_I NPUT_CALLBACK, only input objects are read by portions;

| oFl ag = CV_EI GOBJ_OUTPUT_CALLBACK, only eigen objects are calculated and
written by portions;

12-8

OpenCV Reference Manual Object Recognition Reference 12

| oFl ag = CV_EI GOBJ_BOTH_CALLBACK, Or | oFl ag = CV_EI GOBJ_| NPUT_CALLBACK |
CV_EI GOBJ_QUTPUT_CALLBACK, both processestake place. If one of the above modesis
realized, the parametersi nput and out put , both or either of them, are pointersto
read/write callback functions. These functions must be written by the user; their
prototypes are the same:

CvStatus call back_read (int ind, void* buffer, void* userData);
CvStatus call back_ wite(int ind, void* buffer, void* userData);

i nd Index of the read or written object.

buf f er Pointer to the start memory address where the object will be
allocated.

user Dat a Pointer to the structure that contains all necessary data for the

callback functions.

The user must define the user data structure which may carry all information necessary
to read/write procedure, such as the start address or file name of the first object on the
HDD or any other device, row length and full object length, etc.

Ifi oFl ag isnot equal to Cv_ElI GOBJ_NO CALLBACK, thefunction Cal cEi genObj ect s
allocates a buffer in RAM for objects/eigen objects portion storage. The size of the

buffer may be defined either by the user or automatically. If the parameter i oBuf Si ze
isequal to O, or too large, the function will define the buffer size. The read data must
be located in the buffer compactly, that is, row after row, without alignment and gaps.

An example of the user data structure, i/o callback functions, and the use of the
function Cal cEi genObj ect s in the callback mode is shown below.

Example 12-2 User Data Structure, I/O Callback Functions, and Use of Function
cvCal cEi genObj ect s in Callback Mode

// User data structure
typedef struct _UserData
{

i nt objLength; /* Obj. length (in elenents, not in bytes !) */
i nt st ep; /* Obj. step (in elenents, not in bytes !) */
CvSi ze si ze; /* RO or full size */
CvPoi nt roil ndent;
char* read_nane;
char* wite_nane;

User Dat a;

}
e

u
intgl. 129

OpenCV Reference Manual Object Recognition Reference 12

Example 12-2 User Data Structure, I/O Callback Functions, and Use of Function
cvCal cEi genObj ect s in Callback Mode (continued)

/'l Read call back function
CvStatus call back_read_8u (int ind, void* buffer, void* userData)

int i, j, k=0 m

User Dat a* data = (UserDat a*)user Dat a;
uchar* buff = (uchar*)buf;

char nane[32];

FILE *f;

f(ind<0) return CV_StsBadArg;
i f(buf==NULL || userData==NULL) CV_StsNul | Ptr;

for(i=0; i<28; i++)
{

name[i] = data->read_nane[i];

if(name[i]=="." || nane[i]==" '))break;

nane[i] 48 + ind/ 100;

nane[i +1] 48 + (i nd%d00)/ 10;

nane[i +2] = 48 + ind%0;

i f((f=fopen(nane, "r"))==NULL) return CV_BadCal | Back;
m = dat a->roi | ndent.y*step + data->roilndent. x;

for(i=0; i<data->size.height; i++, mt=data->step)

fseek(f, m, SEEK SET);
for(j=0; j<data->size.width; j++ k++)
fread(buff+k, 1, 1, f);
}

fclose(f);
return CV_StsOx;

/1 Wite callback function
cvStatus cal l back_wite_32f (int ind, void* buffer, void* userData)

{ int i, j, k=0 m
User Dat a* data = (UserDat a*) user Dat a;
float* buff = (float*)buf;
char nare[32];
FI LE *f;

f(ind<O0) return CV_StsBadArg;
i f(buf==NULL || userData==NULL) CV_StsNul | Ptr;

for(i=0; i<28; i++)

u
intel. 1210

OpenCV Reference Manual Object Recognition Reference 12

Example 12-2 User Data Structure, I/O Callback Functions, and Use of Function
cvCal cEi genObj ect s in Callback Mode (continued)

name[i] = data->read_nane[i];
if(name[i]=="." || nane[i]==" '))break;

}
i f((f=fopen(nane, "w'))==NULL) return CV_BadCal | Back;
m = 4 * (ind*data->objlLength + data->roilndent.y*step

+ dat a->roilndent.x);
for(i=0; i<data->size.height; i++ mt=4*data->step)

fseek(f, m, SEEK SET);
for(j=0; j<data->size.width; j++ k++)
fwite(buff+k, 4, 1, f);
}

fclose(f);
return CV_StsOx;

/1 fragments of the main function
{
int bufSize = 32*1024*1024; //32 MB RAMfor i/o buffer
float* avg;
cv UserData dat a;
cvStatus r;
cvStatus (*read_cal |l back)(int ind, void* buf, void* userData)=
read_cal | back_8u;
cvStatus (*write_callback)(int ind, void* buf, void* userData)=
write_call back_32f;
(cvlnput*) & ead_cal | back;
(cvlinput*)&write_call back;
(u_r)->data;
(u_w) - >dat a;

cvlnput* u_r
cvlnput* u_w
voi d* read_

void* wite_

dat a- >r e'ad'_n'an.e C= n'pu.t .
data->wite_nane = "eigens”;
avg = (float*)cvAll oc(sizeof(float) * obj_w dth * obj_height);

cvCal cEi genObj ect s(obj _nunber,
read._,
wite_,
CV_EI GOBJ_BOTH_CALLBACK,
buf Si ze,
(voi d*) &dat a,
&imt,
avg,

u
intgl. 1211

OpenCV Reference Manual Object Recognition Reference 12

Example 12-2 User Data Structure, I/0O Callback Functions, and Use of Function
cvCal cEi genObj ect s in Callback Mode (continued)

eigval);

Embedded Hidden Markov Models Functions

Create2DHMM
Creates 2D embedded HMM.

CvEHMVF cvCreat e2DHMM i nt* stateNumber, int* nunM x, int obsSize);

stateNunber Array, the first element of the which specifies the number of
superstatesin the HMM. All subsequent elements specify the
number of states in every embedded HMM, corresponding to each
superstate. So, the length of the array is st at eNunber [0] +1.

numv x Array with numbers of Gaussian mixture components per each
internal state. The number of elementsin the array is equal to
number of internal statesin the HMM, that is, superstates are not
counted here.

obsSi ze Size of observation vectors to be used with created HM M.

Discussion

The function Cr eat e2DHWM returns the created structure of the type cvEHMMwWith
specified parameters.

u
intgl. 1212

OpenCV Reference Manual Object Recognition Reference 12

Release2DHMM
Releases 2D embedded HMM.

voi d cvRel ease2DHVM CVEHMWF* hnm) ;
hmm Address of pointer to HMM to be released.

Discussion

The function Rel ease2DHW frees all the memory used by HMM and clears the
pointer to HMM.

CreateObsInfo

Creates structure to store image observation
vectors.

Cvl ngObsl| nfo* cvCreat eObsl nfo(CvSize nunbs, int obsSize);

nunmcbs Numbers of observations in the horizontal and vertical directions.
For the given image and scheme of extracting observations the
parameter can be computed via the macro Cv_COUNT_OBS(roi,
dct Si ze, delta, numObs),whereroi,dctSize, del t a, nunths
are the pointers to structures of the type cvSi ze. The pointer r oi
means size of r oi of image observed, nunbs is the output
parameter of the macro.

obsSi ze Size of observation vectors to be stored in the structure.

Discussion

The function Cr eat eCbsl nf o creates new structures to store image observation
vectors. For definitions of the parametersr oi , dct Si ze, and del t a see the
specification of the function | ngToos_DCT.

u
intel. 1213

OpenCV Reference Manual Object Recognition Reference 12

ReleaseObsInfo
Releases observation vector s structure.

voi d cvRel easesl nfo(CvlnmgObsl nfo** obslnfo);
obsl nfo Address of the pointer to the structure Cvi ngQos| nf o.

Discussion

The function Rel easeos| nf o freesall memory used by observations and clears
pointer to the structure Cvi mgbs| nf o.

ImgToObs_DCT

Extracts observation vectors from image.

voi d cvl ngToObs_DCT(| pl I mage* i mage, float* obs, CvSize dctSize, CvSize
obsSi ze, CvSize delta);

i mge Input image.

obs Pointer to consequently stored observation vectors.

dct Si ze Size of image blocks for which DCT (Discrete Cosine Transform)
coefficients are to be computed.

obsSi ze Number of the lowest DCT coefficientsin the horizontal and vertical

directions to be put into the observation vector.

del ta Shift in pixels between two consecutive image blocksin the
horizontal and vertical directions.

L}
intel.

OpenCV Reference Manual Object Recognition Reference 12

Discussion

Thefunction | ngToGbs_DCT extracts observation vectors, that is, DCT coefficients,
from the image. The user must pass obs| nf 0. obs asthe parameter obs to use this
function with other HM M functions and use the structure obs| nf o of the

Cvl ngQbsl nfo type.

Example 12-3 Calculating Observations for HMM

Cvl ngObs| nf o* obs_i nf o;

cvl ngToObs_DCT(i mage, obs_i nfo->obs, //!!!
dct Si ze, obsSi ze, delta);

UniformimgSegm

Performs uniform segmentation of image
observations by HMM states.

voi d cvUni form ngSegm(CvI ngQbsl nf o* obslnfo, CvEHMM hmm ;
obsl nfo Observations structure.
hmm HMM structure.

u
intel. 1215

OpenCV Reference Manual Object Recognition Reference 12

Discussion

The function Uni f or M ngSegm segments image observations by HMM states
uniformly (see Figure 12-1 for 2D embedded HMM with 5 superstates and 3, 6, 6, 6, 3
internal states of every corresponding superstate).

Figure 12-1 Initial Segmentation for 2D Embedded HMM

InitMixSegm

Segmentsall observationswithin every internal
state of HMM by state mixture components.

voi d cvl

ni tM xSegn(Cvl ngQbsl nfo** obslnfoArray, int num ng, CvEHMM* hnmj;

obs! nf oAr r ay Array of pointersto the observation structures.
num ngy Length of above array.

hmm HMM.

Discussion

Thefunction | ni t M xSegm takes agroup of observations from several training images
already segmented by states and splits a set of observation vectors within every
internal HMM state into as many clusters as the number of mixture components in the
state.

12-16

OpenCV Reference Manual Object Recognition Reference 12

EstimateHMMStateParams
Estimates all parameters of every HMM state.

voi d cvEsti mat eHMVBt at ePar ans(Cvl mgCbsl nf o** obsl nf oArray, int num ng,

CVEHWF hmm) ;
obs| nf oAr r ay Array of pointersto the observation structures.
num ng Length of the array.
hmm HMM.
Discussion

The function Est i mat eHMVBt at ePar ans computes all inner parameters of every
HMM state, including Gaussian means, variances, etc.

EstimateTransProb

Computes transition probability matrices for
embedded HMM.

voi d cvEstimat eTransProb(CvlngObsl nfo** obslnfoArray, int num ng, CvEHMW
hmm) ;

obs! nf oAr r ay Array of pointersto the observation structures.
num ng Length of the above array.

hmm HMM.

Discussion

ThefunctionEst i mat eTr ansProb USes current segmentation of image observationsto
compute transition probability matrices for al embedded and external HMMs.

u
intgl. 1217

OpenCV Reference Manual Object Recognition Reference 12

EstimateObsProb

Computes probability of every observation of
several images.

voi d cvEsti mat eCbsProb(Cvl ngCbsl nf o* obsl nfo, CvVEHMW hmm;

obsInfo Observation structure.
hmm HMM structure.
Discussion

The function Est i mat eObsPr ob computes Gaussian probabilities of each observation
to occur in each of theinternal HMM states.

EViterbi
Executes Miterbi algorithm for embedded HMM.

Fl oat cvEViterbi (CvlnmgObsl nfo* obslnfo, CvEHMW hmm);

obsInfo Observation structure.
hmm HMM structure.
Discussion

Thefunction EVi t er bi executes Viterbi algorithm for embedded HMM. Viterbi
algorithm evaluates the likelihood of the best match between the given image
observations and the given HMM and performs segmentation of image observations
by HMM states. The segmentation is done on the basis of the match found.

u
intel. 1218

OpenCV Reference Manual Object Recognition Reference 12

MixSegmL2

Segments observations from all training images
by mixture components of newly assigned states.

void cvM xSegnmL2(Cvl ngObsl nfo** obslnfoArray, int num nmg, CvEHMW hnm;

obs! nf oAr r ay Array of pointersto the observation structures.
numl ng Length of the array.

hmm HMM.

Discussion

The function M xSegni.2 segments observations from all training images by mixture
components of newly Viterbi algorithm-assigned states. The function uses Euclidean
distance to group vectors around the existing mixtures centers.

HMM Structures

In order to support embedded models the user must define structures to represent 1D
HMM and 2D embedded HMM model.

Example 12-4 Embedded HMM Structure
t ypedef struct _CvEHWM
{

int |evel;

i nt num st at es;

float* transP;

fl oat** obsProb;

uni on

{
CvVEHWSt at e* st at e;
struct _CvEHMW ehmm

u;
} CvEHVWM

Below is the description of the cvEHW fields:

u
intel. 1210

OpenCV Reference Manual Object Recognition Reference 12

| evel Level of embedded HMM. If | evel ==0, HMM is most external. In
2D HMM there are two types of HMM: 1 external and several
embedded. External HMM has| evel ==1, embedded HMM s have

| evel ==0.

num st at es Number of statesin 1D HMM.

transP State-to-state transition probability, square matrix
(numstatexnumstate).

obsProb Observation probability matrix.

state Array of HMM dtates. For the last-level HMM, that is, an HMM
without embedded HMMs, HMM states are real.

ehnmm Array of embedded HMMs. If HMM isnot last-level, then HMM

states are not real and they are HMMs.

For representation of observations the following structure is defined:

Example 12-5 Image Observation Structure

typedef struct CvlngObslnfo
{

i nt obs_x;
i nt obs_y;
i nt obs_size;
float** obs;
int* state;
int* mx;

} Cvl ngQbsl nf o;

This structure is used for storing observation vectors extracted from 2D image.

obs_x Number of observationsin the horizontal direction.

obs_y Number of observationsin the vertical direction.

obs_si ze L ength of every observation vector.

obs Pointer to observation vectors stored consequently. Number of
Vectorsisobs_x*obs_y.

state Array of indices of states, assigned to every observation vector.

m x Index of mixture component, corresponding to the observation

vector within an assigned state.

u
intel. 12.20

OpenCV Reference Manual Object Recognition Reference 12

u
intgl. 1221

OpenCV Reference Manual Object Recognition Reference 12

u
intgl. 1222

3D Reconstruction
Reference

Table 13-1 3D Reconstruction Functions

Group Function Name Description
Camera Calibration Cal i br at eCaner a Calibrates the camera
Functions with single precision.

Cal i br at eCanera 64d

Fi ndExt ri nsi cCaner aPar ans

Fi ndExtri nsi cCaner aPar ans 64d

Rodr i gues

Rodri gues_64d

UnDi st ort Once

UnDi stortlnit

Calibrates camera with
double precision.

Finds the extrinsic
camera parameters for
the pattern.

Finds extrinsic camera
parameters for the
pattern with double
precision.

Converts the rotation
matrix to the rotation
vector and vice versa
with single precision.

Converts the rotation
matrix to the rotation
vector or vice versa with
double precision.

Corrects camera lens
distortion in the case of a
single image.

Calculates arrays of
distorted points indices
and interpolation
coefficients.

u
intgl. 131

OpenCV Reference Manual 3D Reconstruction Reference 13

Table 13-1 3D Reconstruction Functions (continued)

Group Function Name Description

UnDi st ort Corrects camera lens
distortion using
previously calculated
arrays of distorted points
indices and undistortion
coefficients.

Fi ndChessBoar dCor ner Guesses Finds approximate
positions of internal
corners of the

chessboard.
View Morphing Fi ndFundanment al Mat ri x Calculates the
Functions fundamental matrix from

several pairs of
correspondent points in
images from two
cameras.

MakeScanl i nes Calculates scanlines
coordinates for two
cameras by fundamental
matrix.

Pr eWar pl mage Rectifies the image so
that the scanlines in the

rectified image are
horizontal.

Fi ndRuns Retrieves scanlines from
the rectified image and
breaks each scanline
down into several runs.

Dynani cCorrespondMul ti Finds correspondence
between two sets of runs
of two warped images.

MakeAl phaScanl i nes Finds coordinates of
scanlines for the virtual
camera with the given
camera position.

u
intgl. 152

OpenCV Reference Manual

3D Reconstruction Reference 13

Table 13-1 3D Reconstruction Functions (continued)

Group

Function Name

Description

POSIT Functions

Mor phEpi | i nesMul ti

Post War pl nage

Del et eMoi r e

Cr eat ePCSI TObj ect

PCSI T

Rel easePOSI TObj ect

Fi ndHandRegi on

Fi ndHandRegi onA

Cr eat eHandMask

Cal cl mageHonmogr aphy

Cal cProbDensity

MaxRect

Morphs two pre-warped
images using
information about stereo
correspondence.

Warps the rectified
morphed image back.

Deletes moire from the
given image.

Allocates memory for the
object structure and
computes the object
inverse matrix.

Implements POSIT
algorithm.

Deallocates the 3D
object structure.

Finds an arm region in
the 3D range image
data.

Finds an arm region in
the 3D range image data
and defines the arm
orientation.

Creates an arm mask on
the image plane.

Calculates the
homograph matrix for
the initial image
transformation.

Calculates the arm mask
probability density from
the two 2D histograms.

Calculates the maximum
rectangle for two input
rectangles.

13-3

OpenCV Reference Manual

3D Reconstruction Reference 13

Camera Calibration Functions

CalibrateCamera
Calibrates camera with single precision.

voi d cvCal i brat eCamer a(

i nt num mages, int* numPoints, CvSize inageSi ze,

CvPoi nt 2D32f * i magePoi nt s32f, CvPoi nt 3D32f* obj ect Poi nt s32f, CvVect 32f

di stortion32f,
CvMat r 32f

num mages
nunmPoi nt s

i mgeSi ze

i mgePoi nt s32f
obj ect Poi nt s32f
di storti on32f
caner aMat r i x32f

t ransVect s32f

r ot Vat r s32f

usel ntrinsi cGuess

Discussion

rot Mat r s32f,

Cvivat r 32f caneraMat ri x32f, CvVect 32f transVect s32f,
int uselntrinsicGuess);

Number of the images.

Array of the number of pointsin each image.
Size of the image.

Pointer to the images.

Pointer to the pattern.

Array of four distortion coefficients found.
Camera matrix found.

Array of trandate vectors for each pattern position in the
image.

Array of the rotation matrix for each pattern position in the
image.

Intrinsic guess. If equal to 1, intrinsic guess is needed.

The function Cal i br at eCaner a calculates the camera parameters using information
points on the pattern object and pattern object images.

13-4

OpenCV Reference Manual 3D Reconstruction Reference 13

CalibrateCamera_64d
Calibrates camera with double precision.

voi d cvCalibrateCamera_64d(int num nmages, int* numPoints, CvSize inmageSi ze,
CvPoi nt 2D64d* i magePoi nts, CvPoi nt 3D64d* obj ect Poi nts, CvVect 64d
distortion, CvMatr64d cameraMatrix, CvVect64d transVects, CvMatr64d
rotMatrs, int uselntrinsicGess);

num mages Number of the images.

nunPoi nt s Array of the number of pointsin each image.

i mgeSi ze Size of the image.

i magePoi nt s Pointer to the images.

obj ect Poi nt s Pointer to the pattern.

di stortion Distortion coefficients found.

camer aMat ri x Camera matrix found.

transVect s Array of the translate vectors for each pattern position on
the image.

rotMatrs Array of the rotation matrix for each pattern position on the
image.

usel ntrinsi cGuess Intrinsic guess. If equal to 1, intrinsic guess is needed.

Discussion

The function Cal i br at eCamer a_64d is basically the same as the function
Cal i br at eCaner a, but uses double precision.

u
intgl. 155

OpenCV Reference Manual 3D Reconstruction Reference 13

FindExtrinsicCameraParams
Finds extrinsic camera parameters for pattern.

voi d cvFi ndExtri nsi cCaner aPar ans(i nt nunPoints, CvSize inmageSize,
CvPoi nt 2D32f * i magePoi nt s32f, CvPoi nt 3D32f* obj ect Poi nt s32f, CvVect 32f
focal Lengt h32f, CvPoi nt 2D32f pri nci pal Poi nt 32f, CvVect 32f di stortion32f,
CvVect 32f rotVect 32f, CvVect 32f transVect 32f);

nunPoi nt s Number of the points.
| mageSi ze Size of the image.

i magePoi nt s32f Pointer to the image.
obj ect Poi nt s32f Pointer to the pattern.
f ocal Lengt h32f Focal length.

princi pal Poi nt 32f Principal point.

di stortion32f Distortion.

r ot Vect 32f Rotation vector.

t ransVect 32f Trandlate vector.
Discussion

The function Fi ndExt ri nsi cCarrer aPar ans finds the extrinsic parameters for the
pattern.

u
intgl. 156

OpenCV Reference Manual 3D Reconstruction Reference 13

FindExtrinsicCameraParams_64d

Finds extrinsic camera parameters for pattern
with double precision.

voi d cvFi ndExtri nsi cCamer aParans_64d(int nunmPoints, CvSize imgeSi ze,
CvPoi nt 2D64d* i magePoi nts, CvPoi nt 3D64d* obj ect Poi nts, CvVect 64d
focal Lengt h, CvPoi nt 2D64d pri nci pal Poi nt, CvVect64d di stortion, CvVect64d
rot Vect, CvVect64d transVect);

nunPoi nt s Number of the points.
| mageSi ze Size of the image.

i magePoi nt s Pointer to the image.
obj ect Poi nt s Pointer to the pattern.
f ocal Lengt h Focal length.

princi pal Poi nt Principal point.
distortion Distortion.

r ot Vect Rotation vector.

t ransVect Tranglate vector.
Discussion

The function Fi ndExt ri nsi cCamer aPar ans_64d finds the extrinsic parameters for
the pattern with double precision.

Rodrigues

Converts rotation matrix to rotation vector and
vice versa with single precision.

voi d cvRodri gues(CvMatr32f rot Matr32f, CvVect 32f rot Vect 32f, Cviatr 32f
Jacobi an32f, CvRodri guesType convType);

L}
intel.

3D Reconstruction Reference 13

OpenCV Reference Manual
r ot Mat r 32f Rotation matrix.
r ot Vect 32f Rotation vector.

Jacobi an32f

Jacobian matrix 3 X 9.

convType Type of conversion; must be Cv_RODRI GUES_MV for converting the
matrix to the vector or Cv_RODRI GUES_V2Mfor converting the vector
to the matrix.

Discussion

The function Rodr i gues converts the rotation matrix to the rotation vector or vice

versa.

Rodrigues_64d

Converts rotation matrix to rotation vector and
vice versa with double precision.

voi d cvRodrigues_64d(CviMatr64d rotMatr, CvVect64d rotVect, CvMatr64d
CvRodri guesType convType);

Jacobi an

rot Matr
r ot Vect
Jacobi an

convType

Discussion

Rotation matrix.
Rotation vector.
Jacobian matrix 3 X 9.

Type of conversion; must be Cv_RODRI GUES_MV for converting the
matrix to the vector or Cv_RODRI GUES_V2Mfor converting the vector
to the matrix.

The function Rodr i gues_64d converts the rotation matrix to the rotation vector or
vice versawith double precision.

13-8

OpenCV Reference Manual 3D Reconstruction Reference 13

UnDistortOnce
Corrects camera lens distortion.

voi d cvUnDi stortOnce (I pllmge* srclmge, |pllnmage* dstlnmage, float*
intrMatrix, float* distCoeffs, int interpolate=1);

srcl mage Source (distorted) image.
dst | mage Destination (corrected) image.
intrMatrix Matrix of the cameraintrinsic parameters.

di st Coef fs Vector of the four distortion coefficientsk,, k,, p;andp, .
interpolate Interpolation toggle (optional).

Discussion

Thefunction UnDi st ort Once corrects cameralensdistortion in case of asingleimage.
Matrix of the cameraintrinsic parameters and distortion coefficientsk,, k,, p; and
p, must be preliminarily calculated by the function Cal i br at eCaner a.

Ifi nterpol ate =0, inter-pixel interpolation is disabled; otherwise, default bilinear
interpolation is used.

UnDistortinit

Calculates arrays of distorted points indices and
interpolation coefficients.

void cvUnDistortlnit (Ipllmge* srclmage, float* IntrMatrix, float*
di stCoeffs, int* data, int interpolate=1);

srcl mage Source (distorted) image.
intrMatrix Matrix of the cameraintrinsic parameters.
di st Coef fs Vector of the 4 distortion coefficientsk,, k,, p;andp,.

u
intgl. 159

OpenCV Reference Manual 3D Reconstruction Reference 13

dat a Distortion data array.
interpolate Interpolation toggle (optional).

Discussion

Thefunction UnDi st ort I ni t calculates arrays of distorted points indices and
interpolation coefficients using known matrix of the cameraintrinsic parameters and
distortion coefficients. It must be used before calling the function UnDi st ort .

Matrix of the cameraintrinsic parameters and distortion coefficientsk,, k,, p; and
p, must be preliminarily calculated by the function Cal i br at eCaner a.

Thedat a array must be allocated in the main function before use of the function
UnDistortlnit.Ifinterpolate =0,itslength must besi ze. wi dt h*si ze. hei ght
elements; otherwise 3*si ze. wi dt h*si ze. hei ght elements.

Ifi nterpol ate =0, inter-pixel interpolation is disabled; otherwise default bilinear
interpolation is used.

UnDistort
Corrects camera lens distortion.

voi d cvUnDi stort (Ipllnmage* srclmge, |pllmge* dstlnmage, int* data, int
i nterpolate=1);

srcl mage Source (distorted) image.
dst | mage Destination (corrected) image.
dat a Distortion data array.

interpolate Interpolation toggle (optional).

Discussion

The function UnDi st ort corrects camera lens distortion using previously calculated
arrays of distorted points indices and undistortion coefficients. It is used if a sequence
of frames must be corrected.

13-10

OpenCV Reference Manual 3D Reconstruction Reference 13

Preliminarily, the function UnDi st ort | ni t calculates the array dat a.

Ifi nterpol ate = 0, theninter-pixel interpolation is disabled; otherwise bilinear
interpolation is used. In the latter case the function acts slower, but quality of the
corrected image increases.

FindChessBoardCornerGuesses

Finds approximate positions of internal corners
of the chessboard.

i nt cvFi ndChessBoar dCor ner Guesses(| pl I mage* i ng, |pllmge* thresh, CvSi ze

et al

onSi ze, CvPoi nt 2D32f* corners, int* cornerCount);

i ng Source chessboard view; must have the depth of | PL_DEPTH_8U.
t hresh Temporary image of the same size and format as the source image.
et al onSi ze Number of inner corners per chessboard row and column. The width

(the number of columns) must be less or equal to the height (the
number of rows). For chessboard see Figure 6-1.

corners Pointer to the corner array found.

cor ner Count Signed value whose absol ute val ue is the number of cornersfound. A
positive number means that awhole chessboard has been found and a
negative number means that not all the corners have been found.

Discussion

The function Fi ndChessBoar dCor ner Guesses attempts to determine whether the
input imageisaview of the chessboard pattern and locate internal chessboard corners.
The function returns non-zero value if all the corners have been found and they have
been placed in acertain order (row by row, left to right in every row), otherwise, if the
function failsto find all the corners or reorder them, the function returns 0. For
example, asimple chessboard has 8x8 squares and 7x 7 internal corners, that is, points,
where the squares are tangent. The word “ approximate” in the above description

13-11

OpenCV Reference Manual 3D Reconstruction Reference 13

means that the corner coordinates found may differ from the actual coordinates by a
couple of pixels. To get more precise coordinates, the user may use the function
Fi ndCor ner SubPi x.

View Morphing Functions

FindFundamentalMatrix

Calculates fundamental matrix fromseveral pairs
of correspondent pointsin images from two
cameras.

voi d cvFi ndFundanment al Matri x(int* pointsl, int* points2, int nunpoints, int
met hod, CvMatrix3* matrix);

poi ntsl Pointer to the array of correspondence pointsin the first image.

poi nt s2 Pointer to the array of correspondence points in the second image.

nunpoi nt s Number of the point pairs.

met hod Method for finding the fundamental matrix; currently not used, must
be zero.

mat ri x Resulting fundamental matrix.

Discussion

Thefunction Fi ndFundanent al Mat ri x finds the fundamental matrix for two cameras
from several pairs of correspondent points in images from the cameras. If the number
of pairsislessthan 8 or the points lie very close to each other or on the same planar
surface, the matrix is calculated incorrectly.

u
intgl. 1312

OpenCV Reference Manual 3D Reconstruction Reference 13

MakeScanlines

Calculates scanlines coordinates for two cameras
by fundamental matrix.

voi d cvMakeScanl i nes(CvMatri x3* matrix, CvSize ingSize, int* scanlinesl, int*
scanlines2, int* lensl, int* lens2, int* numines);

mat ri x Fundamental matrix.

i ngSi ze Size of the image.

scanl i nesl Pointer to the array of calculated scanlines of the first image.

scanl i nes2 Pointer to the array of calculated scanlines of the second image.

| ensl Pointer to the array of calculated lengths (in pixels) of thefirst image
scanlines.

| ens2 Pointer to the array of calculated lengths (in pixels) of the second
image scanlines.

nuni i nes Pointer to the variable that stores the number of scanlines.

Discussion

The function MakeScanl i nes finds coordinates of scanlines for two images.

This function returns the number of scanlines. The function does nothing except
calculating the number of scanlinesif the pointersscanl i nes1 or scanl i nes2 are
equal to zero.

PreWarplmage

Rectifiesimage.

voi d cvPreVarpl mage(int nunLines, |pllmge* inmg, uchar* dst, int* dstNums,
int* scanlines);

nunLi nes Number of scanlines for the image.

u
intgl. 1313

OpenCV Reference Manual

3D Reconstruction Reference 13

i ng
dst
dst Nuns

scanl i nes

Discussion

Image to prewarp.

Datato store for the prewarp image.

Pointer to the array of lengths of scanlines.
Pointer to the array of coordinates of scanlines.

The function Pr eviar pl mage rectifies the image so that the scanlines in the rectified
image are horizontal. The output buffer of sizemax(wi dt h, hei ght) *numscanl i nes*3
must be alocated before calling the function.

FindRuns

Retrieves scanlines from rectified image and
breaks them down into runs.

voi d cvFi ndRuns(
i neLens_1,
int* nunmRuns_2);

numii nes
prewarp_1
prewar p_2
lineLens_1
lineLens_2
runs_1
runs_2
nunmRuns_1
nunmRuns_2

int nunlines, uchar* prewarp_1, uchar* prewarp_2, int*
int* lineLens_2, int* runs_1, int* runs_2, int* nunRuns_1,

Number of the scanlines.

Prewarp data of the first image.

Prewarp data of the second image.

Array of lengths of scanlinesin the first image.

Array of lengths of scanlinesin the second image.

Array of runsin each scanline in the first image.

Array of runsin each scanline in the second image.

Array of numbers of runsin each scanlinein the first image.
Array of numbers of runsin each scanline in the second image.

13-14

OpenCV Reference Manual 3D Reconstruction Reference 13

Discussion

The function Fi ndRuns retrieves scanlines from the rectified image and breaks each
scanline down into several runs, that is, series of pixels of almost the same brightness.

DynamicCorrespondMulti

Finds cor respondence between two sets of runs of
two war ped images.

voi d cvDynani cCorrespondMulti (int lines, int* first, int* firstRuns, int*
second, int* secondRuns, int* firstCorr, int* secondCorr);

l'ines Number of scanlines.

first Array of runs of the first image.

firstRuns Array of numbers of runsin each scanline of the first image.

second Array of runs of the second image.

secondRuns Array of numbers of runsin each scanline of the second image.

firstCorr Pointer to the array of correspondence information found for the first
runs.

secondCor r Pointer to the array of correspondence information found for the
second runs.

Discussion

The function Dynami cCor respondMul ti finds correspondence between two sets of
runs of two images. Memory must be allocated before calling this function. Memory
size for one array of correspondence information is

max(w dt h, hei ght) *nunscanl i nes* 3*si zeof (int).

u
intgl. 1315

OpenCV Reference Manual 3D Reconstruction Reference 13

MakeAlphaScanlines

Calculates coordinates of scanlines of image from
virtual camera.

voi d cvMakeAl phaScanlines(int* scanlines_1, int* scanlines_2, int*
scanlinesA, int* lens, int numines, float alpha);

scanlines_1 Pointer to the array of the first scanlines.
scanl i nes_2 Pointer to the array of the second scanlines.
scanl i nesA Pointer to the array of the scanlines found in the virtual image.

| ens Pointer to the array of lengths of the scanlines found in the virtual
image.

numl i nes Number of scanlines.

al pha Position of virtual camera(0.0 - 1.0).

Discussion

The function MakeAl phaScanl i nes finds coordinates of scanlines for the virtual
camera with the given camera position.

Memory must be allocated before calling this function. Memory size for the array of
correspondence runsisnumscanl i nes* 2* 4*si zeof (i nt)). Memory size for the array
of the scanline lengthsisnunscanl i nes*2* 4*si zeof (i nt).

MorphEpilinesMulti

Mor phs two pre-warped images using
information about stereo correspondence.

voi d cvMor phEpilinesMulti (int lines, uchar* firstPix, int* firstNum uchar*
secondPi x, int* secondNum wuchar* dstPix, int* dstNum float al pha, int*
first, int* firstRuns, int* second, int* secondRuns, int* firstCorr, int*
secondCorr);

u
intgl. 1316

3D Reconstruction Reference 13

OpenCV Reference Manual

l'ines Number of scanlines in the prewarp image.

firstPix Pointer to the first prewarp image.

firstNum Pointer to the array of numbers of pointsin each scanlinein the first
image.

secondPi x Pointer to the second prewarp image.

secondNum Pointer to the array of numbers of pointsin each scanline in the
second image.

dst Pi x Pointer to the resulting morphed warped image.

dst Num Pointer to the array of numbers of pointsin each line.

al pha Virtual camera position (0.0 - 1.0).

first First sequence of runs.

firstRuns Pointer to the number of runsin each scanline in the first image.

second Second sequence of runs.

secondRuns Pointer to the number of runsin each scanline in the second image.

firstCorr Pointer to the array of correspondence information found for the first
runs.

secondCor r Pointer to the array of correspondence information found for the
second runs.

Discussion

Thefunction Mor phEpi | i nesMul ti morphstwo pre-warped images using information
about correspondence between the scanlines of two images.

PostWarplmage
Warps rectified morphed image back.

voi d cvPost War pl mage(i nt numnLi nes, uchar* src, int* srcNums, |pllmge* ing,
int* scanlines);

nunli nes Number of the scanlines.

u
intgl. 1317

OpenCV Reference Manual 3D Reconstruction Reference 13

src Pointer to the prewarp image virtual image.
srcNums Number of the scanlinesin the image.

i ng Resulting unwarp image.

scanl i nes Pointer to the array of scanlines data.
Discussion

The function Post War pl mage warps the resultant image from the virtual camera by
storing its rows across the scanlines whose coordinates are calculated by
MakeAl phaScanl i nes function.

DeleteMoire
Deletes moire in given image.

voi d cvDel eteMoire(|pllmge* ing);
i my Image.

Discussion

The function Del et eMbi r e deletes moire from the given image. The post-warped
image may have black (un-covered) points because of possible holes between
neighboring scanlines. The function del etes moire (black pixels) from the image by
substituting neighboring pixels for black pixels. If all the scanlines are horizontal, the
function may be omitted.

u
intgl. 1318

OpenCV Reference Manual 3D Reconstruction Reference 13

POSIT Functions

CreatePOSITObject

Initializes structure containing object
information.

CvPCsI TObj ect* cvCreat ePOSI TObj ect (CvPoi nt 3D32f* points, int nunmPoints);

poi nt s Pointer to the points of the 3D object model.
nunPoi nt s Number of object points.
Discussion

The function Cr eat ePOSI TObj ect allocates memory for the object structure and
computes the object inverse matrix.

The preprocessed object datais stored in the structure cvPCsI Tbj ect , internal for
OpenCV, which means that the user cannot directly access the structure data. The user
may only create this structure and pass its pointer to the function.

Object is defined as a set of points given in a coordinate system. The function POSI T
computes a vector that begins at a camera-related coordinate system center and ends at
the poi nt s[0] of the object.

Once thework with agiven object isfinished, the function Rel easePOSI TObj ect must
be called to free memory.

POSIT
Implements POS T algorithm.

voi d cvPOSI T(CvPoi nt 2D32f* i magePoi nts, CvPOSI TObj ect* pObj ect, double
focal Length, CvTernCriteria criteria, CvMatrix3* rotation, CvPoint3D32f*
transl ation);

u
intgl. 1310

3D Reconstruction Reference 13

OpenCV Reference Manual
i mgePoi nts Pointer to the object points projections on the 2D image plane.
pbj ect Pointer to the object structure.
focal Length Focal length of the camera used.
criteria Termination criteria of the iterative POSIT algorithm.
rotation Matrix of rotations.

transl ation

Discussion

Translation vector.

The function posI T implements POSIT algorithm. Image coordinates are given in a
camera-related coordinate system. The focal length may be retrieved using camera
calibration functions. At every iteration of the algorithm new perspective projection of
estimated pose is computed.

Difference norm between two projections is the maximal distance between
corresponding points. The parameter criteri a. epsi | on servesto stop the algorithm
if the differenceis small.

ReleasePOSITODbject

Deallocates 3D object structure.

voi d cvRel easePOSI TObj ect (CvPOSI TObj ect ** ppObj ect);

ppObj ect

Discussion

Address of the pointer to the object structure.

The function Rel easePOSI TObj ect releases memory previously allocated by the
function Cr eat ePOSI TObj ect .

13-20

OpenCV Reference Manual 3D Reconstruction Reference 13

Gesture Recognition Functions

FindHandRegion

Finds arm region in 3D range image data.

voi d cvFi ndHandRegi on(CvPoi nt 3D32f * points, int count, CvSeq* indexs, float*
line, CvSize2D32f size, int flag, CvPoint3D32f* center, CvMenftorage*
storage, CvSeq** nunbers);

poi nt s Pointer to the input 3D point data.

count Numbers of the input points.

i ndexs Seguence of the input points indicesin the initial image.
l'ine Pointer to the input points approximation line.

si ze Size of the initial image.

flag Flag of the arm orientation.

center Pointer to the output arm center.

st orage Pointer to the memory storage.

number s Pointer to the output sequence of the points indices.
Discussion

The function Fi ndHandRegi on finds the arm region in 3D range image data. The
coordinates of the points must be defined in the world coordinates system. Each input
point has user-defined transform indicesi ndexs in theinitial image. The function
finds the arm region along the approximation line from the left, if f1 ag = 0, or from
theright, if f1 ag = 1, inthe points maximum accumulation by the points projection
histogram calculation. Also the function calcul ates the center of the arm region and the
indices of the points that lie near the arm center. The function Fi ndHandRegi on
assumes that the arm length is equal to about 0.25m in the world coordinate system.

u
intgl. 1321

OpenCV Reference Manual 3D Reconstruction Reference 13

FindHandRegionA

Finds arm region in 3D range image data and
defines arm orientation.

voi d cvFi ndHandRegi onA(CvPoi nt 3D32f * poi nts, int count, CvSeq* indexs, float*
line, CvSize2D32f size, int jCenter, CvPoint3D32f* center, CvMenttorage*
storage, CvSeq** nunbers);

poi nt s Pointer to the input 3D point data.

count Number of the input points.

i ndexs Seguence of the input points indicesin the initial image.
l'ine Pointer to the input points approximation line.

si ze Size of the initial image.

j Cent er Input j -index of the initial image center.

center Pointer to the output arm center.

st orage Pointer to the memory storage.

number s Pointer to the output sequence of the points indices.
Discussion

The function Fi ndHandRegi onA finds the arm region in the 3D range image data and
defines the arm orientation (left or right). The coordinates of the points must be
defined in the world coordinates system. The input parameter j Cent er isthe index |
of the initial image center in pixels (wi dt h/ 2). Each input point has user-defined
transform indices on the initial image (i ndexs). The function finds the arm region
along approximation line from the left or from the right in the points maximum
accumulation by the points projection histogram calculation. Also the function
calculates the center of the arm region and the indices of points that lie near the arm
center. The function Fi ndHandRegi onA assumes that the arm length is equal to about
0.25m in the world coordinate system.

u
intgl. 1322

OpenCV Reference Manual 3D Reconstruction Reference 13

CreateHandMask
Creates arm mask on image plane.

voi d cvCreat eHandMask(CvSeq* nunbers, |pllmge *i ngMask, CvRect *roi);

nunber s Sequence of the input points indicesin theinitial image.
i mgMask Pointer to the output image mask.

r oi Pointer to the output arm ROI.

Discussion

Thefunction Cr eat eHandMask creates an arm mask on the image plane. The pixels of
the resulting mask associated with the set of the initial image indicesi ndexs
associated with hand region have the maximum unsigned char value (255). All
remaining pixels have the minimum unsigned char value (0). The output image mask
i mgMask hasto have the| PL_DEPTH_8U type and the number of channelsis 1.

CalclmageHomography
Calculates homography matrix.

voi d cvCal cl mageHormogr aphy(fl oat* |ine, CvPoint3D32f* center, fl oat
intrinsic[3][3], float honography[3][3]);

l'ine Pointer to the input 3D line.
center Pointer to the input arm center.
intrinsic Matrix of the intrinsic camera parameters.

homogr aphy Output homography matrix.

u
intgl. 1323

OpenCV Reference Manual 3D Reconstruction Reference 13

Discussion

The function Cal cl mageHormmogr aphy cal culates the homograph matrix for the initial
image transformation from image plane to the plane, defined by 3D arm line (See
Figure 6-10 in Programmer Guide 3D Reconstruction Chapter). If n;=(nx, ny) and
n,=(nx, nz) are coordinates of the normals of the 3D line projection of planes Xy and
Xz, then the resulting image homography matrix is calculated as
H= A (R, +(l 5,5-Ry)-X,-[0,0,1])- A" , whereR, isthe 3x3 matrix R, = R, - R,, and
R, = [Ny XU,, Ny U, 1 Ry = [Uy XNy Uy, Nyl u, = [0,0,1], u :[01O]T>zh:E:[T—X&1}T
zobn y Y Tz o Y o ’ Tz Tz’Tz’

where (T,,T,,T,) isthearm center coordinatesin the world coordinate system, and A is
the intrinsic camera parameters matrix

f, 0c
A=

Ofycy

001

X

The diagonal entriesf, and f, are the camerafocal length in units of horizontal and
vertical pixelsand the two remaining entries c,, ¢, are the principal point image
coordinates.

CalcProbDensity

Calculates arm mask probability density on
image plane.

voi d cvCal cProbDensity (CvHi st ogrant hist, CvH stogrant histMask, CvHi stogrant

hi st Dens);
hi st Input image histogram.
hi st Mask Input image mask histogram.
hi st Dens Resulting probability density histogram.

u
intgl. 1324

OpenCV Reference Manual 3D Reconstruction Reference 13

Discussion

The function Cal cProbDensi ty calculates the arm mask probability density from the
two 2D histograms. The input histograms have to be calculated in two channels on the
initial image. If {h;;} and {hm },1<i <B;,1<j <B; areinput histogram and mask
histogram respectively, then the resulting probability density histogram»; ; is

calculated as
T 255, i f hy; #0,
_ i
Pij Z0,if h. =0

i
255,if m;>h;

So the values of the p; ; are between 0 and 255.

MaxRect
Calculates the maximum rectangle.

void cvMaxRect (CvRect* rectl, CvRect* rect2, CvRect* maxRect);

rectl First input rectangle.
rect?2 Second input rectangle.
maxRect Resulting maximum rectangle.

u
intgl. 1325

OpenCV Reference Manual 3D Reconstruction Reference 13

Discussion

The function MaxRect calculates the maximum rectangle for two input rectangles
(Figure 13-1).

Figure 13-1 Maximum Rectangular for Two Input Rectangles

Maximum
Rectangle

u
intgl. 1326

Basic Sructures and
Operations Reference

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types

Name

Description

Image Functions
Cr eat el mageHeader

Creat el mage
Rel easel nageHeader

Rel easel mage
Cr eat el mageDat a

Rel easel nageDat a
Set | mageDat a

Set | mageCO

Set | mageRO
Cet | mageRawDat a

I ni t |l mageHeader

Copyl nage

Dynamic Data Structures

Functions
Cr eat eMentfst or age

Creat eChi | dMentst or age

Functions

Allocates, initializes, and returns structure | pl | mage.
Creates the header and allocates data.

Releases the header.

Releases the header and the image data.

Allocates the image data.

Releases the image data.

Sets the pointer to dat a and st ep parameters to given
values.

Sets the channel of interest to a given value.
Sets the image ROI to a given rectangle.
Fills output variables with the image parameters.

Initializes the image header structure without memory
allocation.

Copies the entire image to another without considering
ROLI.

Creates a memory storage and returns the pointer to it.
Creates a child memory storage

14-1

OpenCV Reference Manual

Basic Sructures and Oper ations Reference 14

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name

Description

Rel easeMentst or age

Cl ear Mentst or age
SaveMentt or agePos

Rest or eMentt or agePos

Cr eat eSeq
Set SeqBl ockSi ze
SeqPush
SeqPop
SeqPushFr ont
SeqPopFr ont
SeqPushMul t
SeqPopMul ti
Seql nsert
SegRenove

Cl ear Seq

Get SegEl em

SeqEl em dx
Cvt SeqToArray

MakeSeqHeader For Array

St art AppendToSeq
Start WiteSeq

EndWi t eSeq
Fl ushSegWiter

Cet SeqReader Pos

Set SeqReader Pos

De-allocates all storage memory blocks or returns them to
the parent, if any.

Clears the memory storage.

Saves the current position of the storage top.

Restores the position of the storage top.

Creates a sequence and returns the pointer to it.

Sets up the sequence block size.

Adds an element to the end of the sequence.

Removes an element from the sequence.

Adds an element to the beginning of the sequence.
Removes an element from the beginning of the sequence.
Adds several elements to the end of the sequence.
Removes several elements from the end of the sequence.
Inserts an element in the middle of the sequence.
Removes elements with the given index from the sequence.
Empties the sequence.

Finds the element with the given index in the sequence and
returns the pointer to it.

Returns index of concrete sequence element.

Copies the sequence to a continuous block of memory.
Builds a sequence from an array.

Initializes the writer to write to the sequence.

Is the exact sum of the functions Cr eat eSeq and
St art AppendToSeg.

Finishes the process of writing.
Updates sequence headers using the writer state.

Returns the index of the element in which the reader is
currently located.

Moves the read position to the absolute or relative position.

14-2

OpenCV Reference Manual

Basic Sructures and Oper ations Reference 14

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name Description

Cr eat eSet Creates an empty set with a specified header size.
Set Add Adds an element to the set.

Set Renpve Removes an element from the set.

Cet Set El em Finds a set element by index.

Cl ear Set Empties the set.

Cr eat eG aph

G aphAddVt x
Gr aphRenmoveVt x

Gr aphRenmoveVt xByPt r

G aphAddEdge
Gr aphAddEdgeByPt r

Gr aphRenpveEdge

Gr aphRenmpveEdgeByPt r

Fi ndGr aphEdge

Fi ndGr aphEdgeByPt r
Gr aphVt xDegr ee

Gr aphVt xDegr eeByPt r

Cl ear G aph
Get G aphVt x
G aphVt x| dx

G aphEdgel dx
Matrix Operations Functions

Al'l oc

Al |l ocArray
Free

Creates an empty graph.
Adds a vertex to the graph.
Removes a vertex from the graph.

Removes a vertex from the graph together with all the
edges incident to it.

Adds an edge to the graph.

Adds an edge to the graph given the starting and the ending
vertices.

Removes an edge from the graph.

Removes an edge from the graph that connects given
vertices.

Finds the graph edge that connects given vertices.
Finds the graph edge that connects given vertices.
Finds an edge in the graph.

Counts the edges incident to the graph vertex, both
incoming and outcoming, and returns the result.

Removes all the vertices and edges from the graph.
Finds the graph vertex by index.

Returns the index of the graph vertex.

Returns the index of the graph edge.

Allocates memory for the matrix data.
Allocates memory for the matrix array data.
Frees memory allocated for the matrix data.

intel.

14-3

OpenCV Reference Manual

Basic Sructures and Oper ations Reference 14

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name Description

FreeArray Frees memory allocated for the matrix array data.

Add Computes sum of two matrices.

Sub Computes difference of two matrices.

Scal e Multiplies every element of the matrix by a scalar.

Dot Pr oduct Calculates dot product of two vectors in Euclidian metrics.

Cr ossProduct
mul
Mul Tr ansposed

Transpose
| nvert

o
)
O
o

g

Set Zer o

Setldentity
Mahal onobi s

SVD

Ei genWW

Per specti vePr oj ect

Drawing Primitives Functions

Li ne

Li neAA
Rectangl e
Crcle

El lipse

El i pseAA
FillPoly

Calculates the cross product of two 3D vectors.
Multiplies matrices.

Calculates the product of a matrix and its transposition.
Transposes a matrix.

Inverts a matrix.

Returns the trace of a matrix.

Returns the determinant of a matrix.

Copies one matrix to another.

Sets the matrix to zero.

Sets the matrix to identity.

Calculates the weighted distance between two vectors.

Decomposes the source matrix to product of two
orthogonal and one diagonal matrices.

Computes eigenvalues and eigenvectors of a symmetric
matrix.

Implements general transform of a 3D vector array.

Draws a simple or thick line segment.

Draws an antialiased line segment.

Draws a simple, thick or filled rectangle.

Draws a simple, thick or filled circle.

Draws a simple or thick elliptic arc or fills an ellipse sector.
Draws an antialiased elliptic arc.

Fills an area bounded by several polygonal contours.

intel.

14-4

OpenCV Reference Manual

Basic Sructures and Oper ations Reference 14

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name

Description

Fi I | ConvexPol y

Pol yLi ne

Pol yLi neAA
| ni t Font

Put Text

Cet Text Si ze
Utility Functions
AbsDi f f

AbsDi ffS

Mat chTenpl at e
Cvt Pi XxToPl ane
Cvt Pl aneToPi x
ConvertScal e

InitLinelterator

Sanpl eLi ne
Cet Rect SubPi x

bFast Arct an

Sqrt
bSqrt
| nvSgrt
bl nvSgrt

bReci procal
bCart ToPol ar

bFast Exp

Fills convex polygon interior.

Draws a set of simple or thick polylines.
Draws a set of antialiased polylines.
Initializes the font structure.

Draws a text string.

Retrieves width and height of the text string.

Calculates absolute difference between two images.

Calculates absolute difference between an image and a
scalar.

Fills a specific image for a given image and template.
Divides a color image into separate planes.

Composes a color image from separate planes.

Converts one image to another with linear transformation.

Initializes the line iterator and returns the number of pixels
between two end points.

Reads a raster line to buffer.

Retrieves a raster rectangle from the image with sub-pixel
accuracy.

Calculates fast arctangent approximation for arrays of
abscissas and ordinates.

Calculates square root of a single argument.
Calculates the square root of an array of floats.
Calculates the inverse square root of a single float.
Calculates the inverse square root of an array of floats.
Calculates the inverse of an array of floats.

Calculates the magnitude and the angle for an array of
abscissas and ordinates.

Calculates fast exponent approximation for each element of
the input array of floats.

14-5

OpenCV Reference Manual

Basic Sructures and Oper ations Reference 14

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name Description

bFast Log Calculates fast logarithm approximation for each element of
the input array.

Randl ni t Initializes state of the random number generator.

bRand Fills the array with random numbers and updates generator
state.

Filllmage Fills the image with a constant value.

RandSet Range

KMeans

Memory Storage

CvMentfst or age Structure
Definition

CvMenBl ock_Structure Definition

CvMentt or agePos_Structure
Definition

Sequence Data
CvSequence_Structure Definition

Standard Types of Sequence
Elements

Standard Kinds of Sequences

CvSeqBl ock_Structure Definition

Set Data Structures
CvSet Structure Definition
CvSet El emStructure Definition

Graphs Data Structures

CvGr aph_Structure Definition

Definitions of Cv&G aphEdge and
CvG aphVt x_Structures

Changes the range of generated random numbers without
reinitializing RNG state.

Splits a set of vectors into a given number of clusters.
Data Types

Simplifies the extension of the structure CvSeq with
additional parameters.

Provides definitions of standard sequence elements.

Specifies the kind of the sequence.
Defines the building block of sequences.

14-6

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name Description

Matrix Operations

CvVat _Structure Definition Stores real single-precision or double-precision matrices.
CvVat Ar r ay_Structure Definition — Stores arrays of matrices to reduce time call overhead.

Pixel Access
CvPi xel Posi ti on_Structures

Definition
Pixel Access Macros
CV_INIT_PIXEL_POS Initializes one of CvPi xel Posi ti on structures.
CV_MOVE_TO Moves to a specified absolute position.
CV_MOVE Moves by one pixel relative to the current position.
CV_MOVE_WRAP Moves by one pixel relative to the current position and
wraps when the position reaches the image boundary.
CV_MOVE_PARAM Moves by one pixel in a specified direction.
CV_MOVE_PARAM_WRAP Moves by one pixel in a specified direction with wrapping.

Image Functions Reference

CreatelmageHeader

Allocates, initializes, and returns structure
I plimage.

I pl mge* cvCreatel mageHeader (CvSi ze size, int depth, int channels);

si ze Image width and height.
depth Image depth.
channel s Number of channels.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Cr eat el mageHeader allocates, initializes, and returns the structure
| pl I mge. Thiscall isashortened form of

i pl Cr eat el nageHeader (channel s, 0, depth,
channels == 1 ? "GRAY" : "R&B",
channels == 1 ? "GRAY" : channels == 3 ? "BGR" : "BGRA",
| PL_DATA ORDER PI XEL, |PL_ORI G N_TL, 4,
size.wi dth, size. height,
0,0,0,0);

Createlmage
Creates header and allocates data.

I pl I mmge* cvCreatel mage(CvSize size, int depth, int channels);

si ze Image width and height.
depth Image depth.

channel s Number of channels.
Discussion

The function Cr eat el nage creates the header and allocates data. Thiscall isa
shortened form of

header = cvCreat el nageHeader (si ze, dept h, channel s) ;
cvCreat el mageDat a(header) ;

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

ReleaselmageHeader
Releases header.

voi d cvRel easel nageHeader (| pl I mage** i mage);

i mge Double pointer to the deall ocated header.

Discussion

The function Rel easel mageHeader releases the header. This cal isa shortened form
of

if(imge)

{
i pl Deal | ocate(*i mage,
| PL_I MAGE_HEADER | | PL_I MAGE_RO);
*i mge = O;

Releaselmage
Releases header and image data.

voi d cvRel easel mage(Ipllnage** inmage)
i mge Double pointer to the header of the deallocated image.

Discussion

The function Rel easel mage releases the header and the image data. Thiscall isa
shortened form of

if(imge)

{
i pl Deal | ocate(*image, |PL_I MAGE_ALL);

L}
intel. 149

OpenCV Reference Manual Basic Sructures and Operations Reference 14

*i mage = O;

CreatelmageData
Allocates image data.

voi d cvCreat el mageData(| pl | mage* i mage);

i mge Image header.
Discussion
Thefunction Cr eat el nageDat a allocates the image data. Thiscall isashortened form
of
i f(imge->depth == | PL_DEPTH_32F)
{
i pl Al'l ocat el mageFP(inmage, 0, 0);
}
el se
{
i pl Al'l ocatel mage(inmage, 0, 0);
}

ReleaselmageData
Releases image data.

voi d cvRel easel nageDat a(| pl | mage* i nmage);
i mge Image header.

u
intel. 1410

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Rel easel mageDat a releases the image data. Thiscall is a shortened
form of
i pl Deal | ocate(image, |PL_I MAGE_DATA);

SetlmageData

Sets pointer to data and step parametersto given
values.

voi d cvSet I mageData(|pl | nage* inage, void* data, int step);

i mge Image header.
dat a User data.
step Distance between the raster linesin bytes.
Discussion
Thefunction Set | nageDat a Setsthe pointer to dat a and st ep parameters to given
values.
SetlimageCOl

Sets channel of interest to given value.

void cvSet | mageCO (| pl | mage* imge, int coi);
i mge Image header.
coi Channel of interest.

u
intgl. 1411

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

Thefunction Set | mageCO setsthe channel of interest to agiven value. If ROl isNULL
andcoi != 0, ROl isallocated.

SetimageROI

Setsimage ROI to given rectangle.

voi d cvSet I mageRO (| pl I mage* i mage, CvRect rect);

i mge Image header.
rect ROI rectangle.
Discussion

The function Set | mgeRO sets the image ROI to agiven rectangle. If ROl isNULL
and the value of the parameter r ect isnot equal to the whole image, ROI is allocated.

GetlmageRawData
Fills output variables with image parameters.

voi d cvGet | mmgeRawDat a(const | pllnage* inage, uchar** data, int* step,
CvSi ze* roi Size);

i mge Image header.

dat a Pointer to the top-left corner of ROI.

step Full width of the raster line, equalstoi mage- >wi dt hSt ep.
roi Si ze ROI width and height.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Get | mageRawDat a fills output variables with the image parameters. All
output parameters are optional and could be set to NULL.

InitimageHeader

Initializes image header structure without
memory allocation.

voi d cvlnitl mageHeader (| pllInmge* i mage, CvSize size, int depth, int channels,
int origin, int align, int clear);

i mge Image header.

si ze Image width and height.

depth Image depth.

channel s Number of channels.

origin | PL_ORI G N_TL Or I PL_ORI Gl N_BL.

align Alignment for the raster lines.

cl ear If the parameter value equals 1, the header is cleared before
initialization.

Discussion

The function | ni t | mageHeader initializes the image header structure without
memory allocation.

u
intel. 1413

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Copylmage

Copies entire image to another without
considering ROI.

voi d cvCopyl mage(I pl | mage* src, |pllnmage* dst);

src Source image.
dst Destination image.
Discussion

The function Copyl mage copies the entire image to another without considering ROI.
If the destination image is smaller, the destination image datais reallocated.

Pixel Access Macros

This section describes macros that are useful for fast and flexible access to image
pixels. The basic ideas behind these macros are as follows:

1. Some structures of CvPi xel Access type are introduced. These structures
contain all information about ROI and its current position. The only difference
across al these structuresis the data type, not the number of channels.

2. Thereexist fast versions for moving in a specific direction, e.g.,
CV_MOVE_LEFT, wrap and non-wrap versions. More complicated and slower
macros are used for moving in an arbitrary direction that is passed as a
parameter.

3. Most of the macros require the parameter cs that specifies the number of the
image channels to enabl e the compiler to remove superfluous multiplications
in case the image has asingle channel, and substitute faster machine
instructions for them in case of three and four channels.

Example 14-1 CvPi xel Posi ti on Structures Definition

typedef struct _CvPi xel Position8u
{

unsi gned char* currline;
/* pointer to the start of the current

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Example 14-1 CvPi xel Posi ti on Structures Definition (continued)

pi xel line */
unsi gned char* topline;
/* pointer to the start of the top pixel
line */
unsi gned char* bott oml i ne;
/* pointer to the start of the first
line which is below the i mage */

i nt X; /* current x coordinate (in pixels) */
i nt width; /* width of the image (in pixels)*/
i nt hei ght; /* height of the image (in pixels)*/
i nt step; [/* distance between lines (in
el enents of single plane) */

i nt step_arr[3]; /* array: (O, -step, step).

It is used for vertical

novi ng */

} CvPi xel Posi ti on8u;

/*this structure differs fromthe above only in data type*/
t ypedef struct _CvPi xel Position8s

char* currline;
char* topline;
char* bottom i ne;

i nt X;

i nt wi dt h;

i nt hei ght ;

i nt st ep;

i nt step_arr[3];

} CvPi xel Posi tion8s;

/* this structure differs fromthe CvPixel Position8u only in data type
*/

t ypedef struct _CvPi xel Position32f

{

float* currline;

float* topline;

float* bottonline;

i nt X;

i nt wi dt h;

i nt hei ght ;

i nt st ep;

i nt step_arr[3];
} CvPi xel Posi tion32f;

14-15

OpenCV Reference Manual Basic Sructures and Operations Reference 14

CV_INIT_PIXEL_POS

Initiali zes one of CvPixelPosition structures.

#define CV_IN T_PI XEL_POS(pos, origin, step, roi, X, y, orientation)

pos Initialization of structure.

origin Pointer to the left-top corner of ROI.
step Width of the whole image in bytes.
roi Width and height of ROI.

X, Y Initial position.

orientation Image orientation; could be either
CV_ORI Gl N_TL - top/left orientation, or
CV_ORI Gl N_BL - bottom/left orientation.

CV_MOVE_TO

Moves to specified absolute position.

#define CV_.MOVE_TQ(pos, X, Yy, CS)

pos Position structure.
X, Y Coordinates of the new position.
cs Number of the image channels.

u
intel. 1416

OpenCV Reference Manual Basic Sructures and Operations Reference 14

CV_MOVE

Moves by one pixel relative to current position.

#defi ne CV_MOVE_LEFT(pos, cs)
#defi ne CV_MOVE_RI GHT(pos, cs)
#defi ne CV_MOVE_UP(pos, cs)
#defi ne CV_MOVE_DOMNN(pos, cs)
#define CV_MOVE_LU(pos, cs)
#defi ne CV_MOVE_RU(pos, cs)
#define CV_MOVE_LD(pos, cs)
#defi ne CV_MOVE_RD(pos, cs)
pos Position structure.
cs Number of the image channels.

CV_MOVE_WRAP

Moves by one pixel relative to current position
and wraps when position reaches image
boundary.

#defi ne CV_MOVE_LEFT_WRAP(pos, cs)
#defi ne CV_MOVE_RI GHT_WRAP(pos, cs)
#defi ne CV_MOVE_UP_WRAP(pos, cs)
#defi ne CV_MOVE_DOAN_WRAP(pos, cs)
#defi ne CV_MOVE_LU WRAP(pos, cs)
#defi ne CV_MOVE_RU WRAP(pos, cs)
#define CV_MOVE_LD WRAP(pos, cs)
#defi ne CV_MOVE_RD WRAP(pos, cs)
pos Position structure.

u
intgl. 1417

OpenCV Reference Manual Basic Sructures and Operations Reference 14

cs Number of the image channels.

CV_MOVE_PARAM

Moves by one pixel in specified direction.

#defi ne CV_MOVE_PARAM pos, shift, cs)

pos Position structure.
cs Number of the image channels.
shift Direction; could be any of the following:

CV_SHI FT_NONE,
CV_SHI FT_LEFT,
CV_SHI FT_RI GHT,
CV_SHI FT_UP,
CV_SHI FT_DOM,
CV_SHI FT_UL,
CV_SHI FT_UR,
CV_SHI FT_DL.

CV_MOVE_PARAM_WRAP

Moves by one pixel in specified direction with
wrapping.

#defi ne CV_MOVE_PARAM WRAP(pos, shift, cs)

pos Position structure.
cs Number of the image channels.
shift Direction; could be any of the following:

u
intel. 1418

OpenCV Reference Manual Basic Sructures and Operations Reference 14

CV_SHI FT_NONE,
CV_SHI FT_LEFT,
CV_SHI FT_RI GHT,
CV_SHI FT_UP,
CV_SHI FT_DOM,
CV_SHI FT_UL,
CV_SHI FT_UR,
CV_SHI FT_DL.

u
intel. 1410

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Dynamic Data Structures Reference

Memory Storage Reference

Example 14-2 CvMenSt or age Structure Definition

t ypedef struct CvMenftor age
{

CvMenBl ock* bottom/* first allocated block */
CvMenBl ock* top; /*current menory block - top of the stack */
struct CvMenttorage* parent; /* borrows new bl ocks from */
i nt bl ock_size; [/* block size */
i nt free_space; /* free space in the current block */
} CvMentt or age;

Example 14-3 CvMenBIl ock Structure Definition

typedef struct CvMenBl ock
{

struct CvMenBl ock* prev;
struct CvMenBl ock* next;
} CvMenBI ock;

Actual data of the memory blocks follows the header, that is, thei th byte of the
memory block can be retrieved with the expression ((char *)(mem bl ock_ptr +1))[i] .
However, the occasions on which the need for direct access to the memory blocks

arises are quite rare. The structure described below stores the position of the stack top
that can be saved/restored:

Example 14-4 CvMenSt or agePos Structure Definition

t ypedef struct CvMenft or agePos

CvMenBIl ock* t op;
int free_space;

}
CvMentt or agePos;

u
intel. 1420

OpenCV Reference Manual Basic Sructures and Operations Reference 14

CreateMemStorage
Creates memory storage.

CvMentt or age* cvCreat eMentSt orage(int bl ockSi ze=0);

bl ockSi ze Size of the memory blocks in the storage; bytes.

Discussion

The function Cr eat eMentSt or age Ccreates a memory storage and returns the pointer to
it. Initially the storage is empty. All fields of the header are set to 0. The parameter

bl ockSi ze must be positive or zero; if the parameter equals O, the block sizeis set to
the default value, currently 64K.

CreateChildMemStorage

Creates child memory storage.

CvMentst or age* cvCreat eChi | dMentst or age(CvMentt or age* parent);

par ent Parent memory storage.

Discussion

The function Cr eat eChi | dMenSt or age creates a child memory storage similar to the
simple memory storage except for the differences in the memory

allocation/de-all ocation mechanism. When achild storage needs a new block to add to
the block list, it tries to get this block from the parent. The first unoccupied parent
block available istaken and excluded from the parent block list. If no blocks are
available, the parent either allocates a block or borrows one from itsown parent, if any.
In other words, the chain, or amore complex structure, of memory storages where
every storage is a child/parent of another is possible. When a child storage isreleased
or even cleared, it returns all blocks to the parent. Note again, that in other aspects, the
child storage is the same as the simple storage.

14-21

OpenCV Reference Manual Basic Sructures and Operations Reference 14

ReleaseMemStorage
Releases memory storage.

voi d cvCreat eChil dMentt or age(CvMenStorage** storage);
storage Pointer to the released storage.

Discussion

The function Cr eat eChi | dMenst or age de-allocates all storage memory blocks or
returns them to the parent, if any. Then it de-allocates the storage header and clearsthe
pointer to the storage. All children of the storage must be released before the parent is
released.

ClearMemStorage
Clears memory storage.

voi d cvC ear Mentst or age(CvMentt orage* storage);
st orage Memory storage.

Discussion

The function Cl ear MenSt or age resets the top (free space boundary) of the storage to
the very beginning. Thisfunction does not de-all ocate any memory. If the storage has a
parent, the function returns all blocks to the parent.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

SaveMemStoragePos
Saves memory storage position.

voi d cvSaveMentt or agePos(CvMentt or age* st orage, CvMentt oragePos* pos);

st orage Memory storage.
pos Currently retrieved position of the in-memory storage top.
Discussion

The function SaveMenst or agePos saves the current position of the storage top to the
parameter pos. The function Rest or eMenst or agePos can further retrieve this
position.

RestoreMemStoragePos
Restores memory storage position.

voi d cvRestoreMentst or agePos(CvMentt or age* storage, CvMenttoragePos* pos);

st orage Memory storage.
pos New storage top position.
Discussion

Thefunction Rest or eMentt or agePos restores the position of the storage top from the
parameter pos. This function and the function Cl ear Mentt or age are the only methods
to release memory occupied in memory blocks.

In other words, the occupied space and free space in the storage are continuous. If the
user needs to process data and put the result to the storage, there arises aneed for the
storage space to be allocated for temporary results. In this case the user may smply
write al the temporary datato that single storage. However, as aresult garbage appears
in the middle of the occupied part. See Figure 14-1.

14-23

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Figure 14-1 Storage Allocation for Temporary Results

Input/Output Storage

Input (Oclipied) Data

Input/Output Storage

etetatetartetattetatets|

etetatetartetattetatets|

sssass :

2N | Sotetetatetotatetetetetetetotatetots

ey PR ees]
s sty
S SR
SIS Ry
SIS

SIS

— —
Temporary Data (Garbage) Output'Data

Saving/Restoring does not work in this case. Creating a child memory storage,
however, can resolve this problem. The agorithm writes to both storages
simultaneously, and, once done, releases the temporary storage. See Figure 14-2.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Figure 14-2 Release of Temporary Storage

Input/Output Storage

s
ficsoscsescisessscssd
Atantetantetattetatets
fisessesesesd
fiooscsescisessscssd
fiooscsescisessscssd
fiooscsescisessscssd
fiooscsescisessscssd
resssssssescd
s
rressssssscd

Temporary Child Storage

RS
PR
R

555 e,
Rssss .
el eN

Sequence Reference

Example 14-5 CvSequence Structure Definition

#defi ne CV_SEQUENCE_FI ELDS() \
i nt header _si ze; /* size of sequence header */ \
struct CvSeqg* h_prev; /* previous sequence */ \
struct CvSeg* h_next; /* next sequence */ \
struct CvSeqg* v_prev; /* 2nd previous sequence */ \
struct CvSeqg* v_next; /* 2nd next sequence */ \
i nt fl ags; /* mcsell aneous flags */ \
i nt total; /* total nunber of elenents */ \
i nt el em si ze;/* size of sequence el enent in bytes */ \
char* bl ock_max; /* maxi mal bound of the |ast block */ \
char* ptr; /* current wite pointer */ \
i nt delta_elens; /* how many el enents all ocated when the seq

grows */ \
CvMentt or age* storage; /* where the seq is stored */ \
CvSeqgBl ock* free_blocks; [/* free blocks list */ \

CvSeqBl ock* first; /* pointer to the first sequence bl ock */
typedef struct CvSeq

CV_SEQUENCE_FI ELDS()
} CvSeq;

u
intel. 1425

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Such an unusual definition simplifies the extension of the structure cvSeq with
additional parameters. To extend CvSeq the user may define a new structure and put
user-defined fields after all cvseq fields that are included via the macro
CV_SEQUENCE_FI ELDS() . Thefield header _si ze contains the actual size of the
sequence header and must be more than or equal to si zeof (CvSeq) . Thefields
h_prev, h_next,v_prev, v_next can be used to create hierarchical structuresfrom
separate sequences. The fieldsh_prev and h_next point to the previous and the next
sequences on the same hierarchical level whilethe fieldsv_prev and v_next point to
the previous and the next sequence in the vertical direction, that is, parent and itsfirst
child. But these are just names and the pointers can be used in a different way. The
fieldfirst pointsto thefirst sequence block, whose structure is described below. The
field flags contain miscellaneous information on the type of the sequence and should
be discussed in greater detail. By convention, the lowest Cv_SEQ ELTYPE_BI TS hits
contain the ID of the element type. The current version hasCv_SEQ ELTYPE_BI TS
equal to 5, that is, it supports up to 32 non-overlapping element types now. Thefile
CvTypes. h declaresthe predefined types.

Example 14-6 Standard Types of Sequence Elements

#defi ne CV_SEQ ELTYPE_PO NT 1/* (x,y) */

#defi ne CV_SEQ ELTYPE_CODE 2 /* freeman code: 0..7 */
#defi ne CV_SEQ ELTYPE_PPO NT 3 /* &(x,y) */

#defi ne CV_SEQ ELTYPE_| NDEX 4 1* #(x,y) */

#defi ne CV_SEQ ELTYPE_GRAPH EDGE 5 /* &next_o, &next _d, &t x_o,

&t x_d */

#defi ne CV_SEQ ELTYPE_GRAPH_VERTEX
#define CV_SEQ ELTYPE_TRI AN_ATR

*/

#defi ne CV_SEQ ELTYPE_CONNECTED COWP 8 /* connected conponent */
#defi ne CV_SEQ ELTYPE_PO NT3D 9 /* (x,y,z) */

~NOo

/* first_edge, &(x,y) */
/* vertex of the binary tree

The next CvV_SEQ KI ND_BI TS hits, al'so 5 in number, specify the kind of the sequence.
Again, predefined kinds of sequences are declared in the file CvTypes. h.

Example 14-7 Standard Kinds of Sequences

#define CV_SEQ KI ND_SET (
#define CV_SEQ Kl ND_CURVE (
#define CV_SEQ KI ND_BIN TREE (
#define CV_SEQ Kl ND_GRAPH (

0 << CV_SEQ ELTYPE_BI TS)
1 << CV_SEQ ELTYPE_BITS)
2
3

<< CV_SEQ ELTYPE_BITS)
<< CV_SEQ ELTYPE_BITS)

intel.

14-26

OpenCV Reference Manual Basic Sructures and Operations Reference 14

The remaining bits are used to identify different features specific to certain sequence
kinds and element types. For example, curves made of points

(CV_SEQ KI ND_CURVE| CV_SEQ ELTYPE_PO NT), together with the flag

CV_SEQ FLAG _CLGCSED belong to the type Cv_SEQ POLYGON or, if other flags are used,
its subtype. Many contour processing functions check the type of the input sequence
and report an error if they do not support thistype. The file CvTypes. h storesthe
completelist of all supported predefined sequence types and hel per macros designed to
get the sequence type of other properties.

Below follows the definition of the building block of sequences.

Example 14-8 CvSeqBl ock Structure Definition

typedef struct CvSeqBl ock
{

struct CvSeqBl ock* prev; /* previous sequence bl ock */
struct CvSeqgBl ock* next; /* next sequence block */

i nt start_index; /* index of the first element in the block +
sequence->first->start_index */
i nt count; /* number of elenents in the block */

char* data; [/* pointer to the first elenent of the block */
} CvSeqBl ock;

Seguence blocks make up a circular double-linked list, so the pointers pr ev and next
are never NULL and point to the previous and the next sequence blocks within the
sequence. It meansthat next of the last block isthe first block and pr ev of the first
block isthelast block. Thefieldsst art _i ndex and count help to track the block
location within the sequence. For example, if the sequence consists of 10 elements and
splitsinto three blocks of 3, 5, and 2 elements, and the first block has the parameter
start _index = 2,thenpairs<start_i ndex, count > for the sequence blocks are
<2, 3>, <5, 5>, and <10, 2> correspondingly. The parameter st art _i ndex of the first
block is usually 0 unless some elements have been inserted at the beginning of the
sequence.

14-27

OpenCV Reference Manual Basic Sructures and Operations Reference 14

CreateSeq
Creates sequence.

CvSeqg* cvCreateSeq(int seqFl ags, int headerSize, int elenSize, CvMenttorage*
st or age) ;

seqFl ags Flags of the created sequence. If the sequence is not passed to any
function working with a specific type of sequences, the sequence
value may be equal to O, otherwise the appropriate type must be
selected from the list of predefined sequence types.

header Si ze Size of the sequence header; must be more than or equal to
si zeof (CvSeq) . If aspecific type or its extension is indicated, this
type must fit the base type header.

el eni ze Size of the sequence elementsin bytes. The size must be consistent
with the sequence type. For example, for a sequence of points to be
created, the element type Cv_SEQ ELTYPE_PO NT should be specified
and the parameter el ensi ze must be equal to si zeof (CvPoi nt) .

st orage Sequence location.

Discussion

Thefunction Cr eat eSeq creates a sequence and returns the pointer to it. The function
allocates the sequence header in the storage block as one continuous chunk and fills
the parameter el enti ze, flags header Si ze, and st or age with passed values, setsthe
parameter del t aEl ens (See the function Set SeqBl ockSi ze) to the default value, and
clears other fields, including the space behind si zeof (CvSeq) .

% NOTE. All headersin the memory storage, including sequence
e headers and sequence block headers, are aligned with the 4-byte
boundary.

14-28

OpenCV Reference Manual Basic Sructures and Operations Reference 14

SetSeqBlockSize

Sets up sequence block size.

voi d cvSet SeqBl ockSi ze(CvSeq* seq, int blockSize);

seq Sequence.
bl ockSi ze Desirable block size.
Discussion

The function Set SeqBl ockSi ze affects the memory alocation granularity. When the
free space in the internal sequence buffers has run out, the function allocates

bl ockSi ze bytesin the storage. If this block immediately follows the one previously
allocated, the two blocks are concatenated, otherwise, a new sequence block is created.
Therefore, the bigger the parameter, the lower the sequence fragmentation probability,
but the more space in the storage is wasted. When the sequence is created, the
parameter bl ockSi ze is set to the default value ~1K. The function can be called any
time after the sequence is created and affects future allocations. The final block size
can be different from the one desired, e.g., if it is larger than the storage block size, or
smaller than the sequence header size plus the sequence element size.

The next four functions SeqPush, SeqPop, SeqPushFr ont , SeqPopFront add or
remove el ements to/from one of the sequence ends. Their time complexity isQ(1) , that
is, all these operations do not shift existing sequence elements.

SegPush

Adds element to sequence end.

voi d cvSegPush(CvSeq* seq, void* element);

seq Sequence.
el ement Added e ement.

intel.

14-29

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function SeqPush adds an el ement to the end of the sequence. Although this
function can be used to create a sequence element by element, there is a faster method
(refer to Writing and Reading Sequences).

SeqPop

Removes element from sequence end.

voi d cvSegPop(CvSeq* seq, void* el enent);

seq Sequence.
el ement Optional parameter. If the pointer is not zero, the function copies the
removed element to this location.

Discussion

The function SeqPop removes an element from the sequence. The function reports an
error if the sequence is already empty.

SegPushFront
Adds element to sequence beginning.

voi d cvSegPushFront (CvSeq* seq, void* elenent);

seq Sequence.
el enent Added €l ement.
Discussion

The function SeqPushFront adds an element to the beginning of the sequence.

u
intgl. 1430

OpenCV Reference Manual Basic Sructures and Operations Reference 14

SeqPopFront

Removes element from sequence beginning.

voi d cvSegPopFront (CvSeg* seq, void* elenment);

seq Sequence.
el ement Optional parameter. If the pointer is not zero, the function copies the

removed element to this location.

Discussion

The function SeqPopFr ont removes an element from the beginning of the sequence.
The function reports an error if the sequence is already empty.

Next two functions SeqPushMul ti, SeqPopMul ti are batch versions of the
PUSH/POP operations.

SegPushMulti

Pushes several elements to sequence end.

voi d cvSegqPushMul ti (CvSeg* seq, void* elenents, int count);

seq Sequence.

el ements Added e ements.

count Number of elementsto push.
Discussion

The function SeqPushMul ti adds several elementsto the end of the sequence. The
elements are added to the sequence in the same order asthey are arranged in the input
array but they can fall into different sequence blocks.

14-31

OpenCV Reference Manual Basic Sructures and Operations Reference 14

SeqPopMulti

Removes several elements from sequence end.

voi d cvSegqPopMul ti (CvSeg* seq, void* elenents, int count);

seq Sequence.

el enent s Removed elements.

count Number of elementsto pop.
Discussion

Thefunction SeqPopMul ti removes several elementsfrom the end of the sequence. If
the number of the elements to be removed exceeds the total number of elementsin the
sequence, the function removes as many elements as possible.

Seqlnsert
Inserts element in sequence middle.

voi d cvSeqglnsert(CvSeq* seq, int beforelndex, void* element);

seq Sequence.

bef orel ndex Index before which the element isinserted. Inserting before O is
egual to cvSeqPushFront and inserting before seq- >t ot al isequal
to cvSeqPush. The index valuesin these two examples are
boundaries for allowed parameter val ues.

el enent Inserted element.

Discussion

Thefunction Seql nsert shifts the sequence el ements from the inserted position to the
nearest end of the sequence before it copies an element there, therefore, the algorithm
time complexity isQ(n/ 2) .

14-32

OpenCV Reference Manual Basic Sructures and Operations Reference 14

SeqRemove
Removes element from sequence middle.

voi d cvSegRenmove(CvSeqg* seq, int index);

seq Sequence.
i ndex Index of removed element.
Discussion

The function SeqRenove removes elements with the given index. If the index is
negative or greater than the total number of elements less 1, the function reports an
error. An attempt to remove an element from an empty sequence is a specific case of
this situation. The function removes an element by shifting the sequence elements
from the nearest end of the sequencei ndex.

ClearSeq

Clears sequence.

voi d cvCl ear Seq(CvSeq* seq);
seq Sequence.

Discussion

The function Cl ear Seq empties the sequence. The function does not return the
memory to the storage, but this memory is used again when new elements are added to
the sequence. This function time complexity isQ(1) .

L}
intgl. 1433

OpenCV Reference Manual Basic Sructures and Operations Reference 14

GetSeqElem

Returns n-th element of sequence.

char* cvGet SeqEl em(CvSeq* seq, int index, CvSegBl ock** bl ock=0);

seq Sequence.
i ndex Index of element.
bl ock Optional argument. If the pointer is not NULL, the address of the

sequence block that contains the element is stored in this location.

Discussion

The function Get SeqEl em finds the element with the given index in the sequence and
returns the pointer to it. In addition, the function can return the pointer to the sequence
block that containsthe element. If the element is not found, the function returns 0. The
function supports negative indices, where -1 stands for the last sequence element, -2
stands for the one before last, etc. If the sequence is most likely to consist of asingle
sequence block or the desired element is likely to be located in the first block, then the
macro CV_GET_SEQ ELEM(el enilype, seq, i ndex) should be used, where the
parameter el enilype isthe type of sequence elements (CvPoi nt for example), the
parameter seq is a sequence, and the parameter i ndex isthe index of the desired
element. The macro checks first whether the desired element belongs to the first block
of the sequence and, if so, returns the element, otherwise the macro calls the main
function Get SeqEl em Negative indices always cause the cvGet SeqEl emcall.

SegElemldx

Returnsindex of concrete sequence element.

int cvSeqEl em dx(CvSeq* seq, void* el enment, CvSeqBl ock** bl ock=0);
seq Sequence.
el enent Pointer to the element within the sequence.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

bl ock Optional argument. If the pointer is not NULL, the address of the
sequence block that contains the element is stored in this location.

Discussion

The function SeqEl em dx returnsthe index of a sequence element or a negative
number if the element is not found.

CvtSeqToArray

Copies sequence to one continuous block of
memory.

voi d* cvCvt SeqToArray(CvSeq* seq, void* array, CvSlice
slice=CV_WHOLE_SEQ(seq));

seq Sequence.

array Pointer to the destination array that must fit al the sequence
elements.

slice Start and end indices within the sequence so that the

corresponding subsequence is copied.

Discussion

The function Cvt SeqToAr ray copies the entire sequence or subsequence to the
specified buffer and returns the pointer to the buffer.

MakeSeqHeaderForArray

Constructs sequence from array.

voi d cvMakeSegHeader For Array(i nt seqType, int headerSize, int el enfSize, void*
array, int total, CvSeq* sequence, CvSeqBl ock* block);

u
intgl. 1435

OpenCV Reference Manual Basic Sructures and Operations Reference 14

seqType Type of the created sequence.

header Si ze Size of the header of the sequence. Parameter sequence must point to
the structure of that size or greater size.

el eni ze Size of the sequence element.

array Pointer to the array that makes up the sequence.

t ot al Total number of elementsin the sequence. The number of array
elements must be equal to the value of this parameter.

sequence Pointer to the local variable that is used as the sequence header.

bl ock Pointer to the local variable that is the header of the single sequence
block.

Discussion

The function MakeSeqgHeader For Ar r ay, the exact opposite of the function

Cvt SeqToAr r ay, builds a sequence from an array. The sequence aways consists of a
single sequence block, and the total number of elements may not be greater than the
value of the parameter t ot al , though the user may remove elements from the
sequence, then add other elements to it with the above restriction.

Writing and Reading Sequences Reference

StartAppendToSeq

Initializes process of writing to sequence.

voi d cvStart AppendToSeq(CvSeq* seq, CvSegWiter* witer);
seq Pointer to the sequence.

writer Pointer to the working structure that contains the current status of the
writing process.

L}
intel.

OpenCV Reference Manual

Basic Sructures and Oper ations Reference 14

Discussion

The function St art AppendToSeq initializes the writer to write to the sequence.
Written elements are added to the end of the sequence. Note that during the writing
process other operations on the sequence may yield incorrect result or even corrupt the
sequence (see Discussion of the function Fl ushSeqw i t er).

StartWriteSeq

Creates new sequence and initializes writer for it.

void cvStartWiteSeq(int seqFl ags, int headerSi ze, int el enSize, CvMenftorage*

st or age,

seqFl ags

header Si ze

el enti ze

st orage

writer

Discussion

CvSegqWiter* witer);

Flags of the created sequence. If the sequence is not passed to any
function working with a specific type of sequences, the sequence
value may be equal to O, otherwise the appropriate type must be
selected from the list of predefined sequence types.

Size of the sequence header. The parameter value may not be less
than si zeof (CvSeq) . If acertain type or extension is specified, it
must fit the base type header.

Size of the sequence elements in bytes; must be consistent with the
sequence type. For example, if the sequence of pointsis created
(element typeCv_SEQ ELTYPE_PQ NT), then the parameter el ensi ze
must be equal to si zeof (CvPoint) .

Sequence location.
Pointer to the writer status.

Thefunction Start Wi t eSeq isthe exact sum of the functions Cr eat eSeq and
St art AppendToSeq.

14-37

OpenCV Reference Manual Basic Sructures and Operations Reference 14

EndWriteSeq

Finishes process of writing.

CvSeq* cvEndWiteSeq(CvSeqWiter* writer);
writer Pointer to the writer status.

Discussion

The function Endw i t eSeq finishes the writing process and returns the pointer to the
resulting sequence. The function also truncates the last sequence block to return the
whole of unfilled space to the memory storage. After that the user may read freely
from the sequence and modify it.

FlushSegWriter

Updates sequence headers using writer state.

voi d cvFl ushSeqWiter(CvSeqWiter* witer);
writer Pointer to the writer status.

Discussion

The function Fl ushSeqw i t er isintended to enable the user to read sequence
elements, whenever required, during the writing process, e.g., in order to check
specific conditions. The function updates the sequence headers to make reading from
the sequence possible. The writer is not closed, however, so that the writing process
can be continued any time. Frequent flushes are not recommended, the function
SeqPush is preferred.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

StartReadSeq

Initializes process of sequential reading from

seguence.

voi d cvStart ReadSeq(CvSeqg* seq, CvSeqReader* reader, int reverse=0);

seq Sequence.
r eader Pointer to the reader status.
reverse Whenever the parameter value equals O, the reading process is going

in the forward direction, that is, from the beginning to the end,
otherwise the reading process direction is reverse, from the end to
the beginning.

Discussion

Thefunction St art ReadSeq initializes the reader structure. After that all the sequence
elements from the first down to the last one can be read by subsequent calls of the
macro CV_READ_SEQ ELEM(el em r eader) that issimilar to CV_WRI TE_SEQ ELEM The
function putsthe reading pointer to the last sequence element if the parameter r ever se
does not equal zero. After that the macro Cv_REV_READ SEQ ELEM(el em r eader) can
be used to get sequence elements from the last to the first. Both macros put the
sequence element to el emand move the reading pointer forward (CV_READ_SEQ ELEM)
or backward (CV_REV_READ_SEQ ELEM). A circular structure of sequence blocksis
used for the reading process, that is, after the last element has been read by the macro
CV_READ_SEQ ELEM thefirst element isread when the macro is called again. The same
appliesto cv_REV_READ_SEQ ELEM Neither function ends reading since the reading
process does not modify the sequence, nor requires any temporary buffers. The reader
field pt r pointsto the current element of the sequence that is to be read first.

14-39

OpenCV Reference Manual Basic Sructures and Operations Reference 14

GetSeqgReaderPos

Returns index of element to read position.

i nt cvGet SeqReader Pos(CvSeqReader* reader);
r eader Pointer to the reader status.

Discussion

Thefunction Get SeqReader Pos returnsthe index of the element in which thereader is
currently located.

SetSeqReaderPos

Moves read position to specified index.

voi d cvSet SeqReader Pos(CvSegReader* reader, int index, int is_relative=0);
r eader Pointer to the reader status.
i ndex Position where the reader must be moved.
is_relative If the parameter valueis not equal to zero, the index means an offset
relative to the current position.

Discussion

The function Set SeqReader Pos moves the read position to the absolute or relative
position. This function allows for cycle character of the sequence.

L}
intel. 1440

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Sets Reference

Sets Functions

CreateSet
Creates empty set.

CvSet* cvCreateSet(int setFlags, int headerSize, int el enSize, CvMenttorage*

st or age) ;
set Fl ags Type of the created set.
header Si ze Set header size; may not be lessthan si zeof (CvSeq) .
el eni ze Set element size; may not be less than 8 bytes, must be divisible by 4.
storage Future set location.
Discussion

The function Cr eat eSet creates an empty set with a specified header size and returns
the pointer to the set. The function simply redirects the call to the function Cr eat eSeq.

SetAdd
Adds element to set.

int cvSet Add(CvSet* set, CvSet* elem CvSet** insertedEl enr0);
set Set.

el em Optional input argument, inserted element. If not NULL, the function
copies the data to the allocated cell omitting the first 4-byte field.

i nsertedEl em Optional output argument; points to the allocated cell.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Set Add allocates anew cell, optionally copiesinput element datato it,
and returns the pointer and the index to the cell. The index value is taken from the
second 4-byte field of the cell. In case the cell was previously deleted and a wrong
index was specified, the function returns this wrong index. However, if the user works
in the pointer mode, no problem occurs and the pointer stored at the parameter

i nsert edEl emmay be used to get access to the added set element.

SetRemove
Removes element from set.

voi d cvSet Renove(CvSet* set, int index);

set Set.
i ndex Index of the removed € ement.
Discussion

The function Set Renove removes an element with a specified index from the set. The
function is typically used when set elements are accessed by their indices. If pointers
are used, the macro CV_REMOVE_SET_ELEM set, index, elem, whereel emisa
pointer to the removed element and i ndex is any non-negative value, may be used to
remove the element. Alternative way to remove an element by its pointer isto calculate
index of the element viathe function SeqEl eni dx after which the function Set Renove
may be called, but this method is much slower than the macro.

GetSetElem
Finds set element by index.

CvSet El ent cvGet Set El en{ CvSet* set, int index);

intel.

14-42

OpenCV Reference Manual Basic Sructures and Operations Reference 14

set Set.
i ndex Index of the set element within a sequence.
Discussion

The function Get Set El em finds a set element by index. The function returns the
pointer to it or O if theindex isinvalid or the corresponding cell is free. The function
supports negative indices through calling the function Get SeqEl em

% NOTE. Theuser can check whether the element belongs to the set
= with the help of themacrocv_I' S_SET_ELEM EXI STS(el en) oncethe
pointer is set to a set element.

ClearSet
Clears set.

voi d cvCl ear Set(CvSet* set);
set Cleared set.
Discussion

The function Cl ear Set empties the set by calling the function d ear Seq and setting
the pointer to the list of free cells. The function takes O 1) time.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Sets Data Structures

Example 14-9 CvSet Structure Definition

#defi ne CV_SET_FI ELDS() \
CV_SEQUENCE_FI ELDS() \
CvMenBl ock* free_el ens;

t ypedef struct CvSet
CV_SET_FI ELDS()

}

CvSet;

Example 14-10 CvSet El emStructure Definition

#define CV_SET_ELEM FI ELDS() \
int* aligned_ptr;
typedef struct _CvSetEl em

CV_SET_ELEM FI ELDS()
}
CvSet El em

Thefirst field isadummy field and is not used in the occupied cells, except the |east
significant bit, which is 0. With this structure the integer element could be defined as

follows:
typedef struct _IntSetEl em
{
CV_SET_ELEM FI ELDS()
i nt val ue;
}
| nt Set El em

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Graphs Reference

CreateGraph
Creates empty graph.

CvGraph* cvCreateG aph(int graphFlags, int headerSize, int vertexSize, int
edgeSi ze, CvStorage* storage);
gr aphFl ags Type of the created graph. The kind of the sequence must be graph
(CV_SEQ _KI ND_GRAPH) and flag CV_GRAPH_FLAG_ORI ENTED allows
the oriented graph to be created. User may choose other flags, aswell
astypes of graph vertices and edges.

header Si ze Graph header size; may not be less than si zeof (CvGraph) .

vertexSi ze Graph vertex size; must be greater than
si zeof (CQvGraphVert ex) and meet all restrictions on the set

element.

edgeSi ze Graph edge size; may not be less than si zeof (CvG aphEdge) and
must be divisible by 4.

storage Future location of the graph.

Discussion

The function Cr eat eG aph creates an empty graph, that is, two empty sets, a set of
vertices and a set of edges, and returnsiit.

GraphAddVix
Adds vertex to graph.

i nt cvGraphAddvt x(CvGraph* graph, CvG aphVtx* vtx, CvG aphVtx** insertedVtx=0
)

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

gr aph Graph.

vt X Optional input argument. Similar to the parameter el em of the
function Set Add, the parameter vt x could be used to initialize new
vertices with concrete values. If vt x isnot NULL, the function copies
it to anew vertex, except the first 4-byte field.

insertedvtx Optional output argument. If not NULL, the address of the new vertex
iswritten there.

Discussion
The function Gr aphAddVt x adds a vertex to the graph and returns the vertex index.

GraphRemoveVix
Removes vertex from graph.

voi d cvG aphRenmoveAddvt x(CvGraph* graph, int vtxldx));

gr aph Graph.
vt x| dx Index of the removed vertex.
Discussion

The function G aphRenmoveAddVt x removes a vertex from the graph together with al
the edgesincident to it. The function reports an error, if input vertices do not belong to
the graph, that makes it safer than Gr aphRenoveVt xBy Pt r, but less efficient.

GraphRemoveVixByPtr

Removes vertex from graph.

voi d cvG aphRenmoveVt xByPtr(CvG aph* graph, CvG aphVtx* vtx);
gr aph Graph.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

vt X Pointer to the removed vertex.

Discussion

The function G aphRermoveVt xByPt r removes a vertex from the graph together with
all the edges incident to it. The function is more efficient than G aphRenoveVt x but
less safe, because it does not check whether the input vertices belong to the graph.

GraphAddEdge
Adds edge to graph.

int cvG aphAddEdge(CvGraph* graph, int startldx, int endldx, CvG aphEdge*
edge, CvG aphEdge** insertedEdge=0);

gr aph Graph.

start|ldx Index of the starting vertex of the edge.

endl dx Index of the ending vertex of the edge.

edge Optional input parameter, initialization datafor the edge. If not NULL,

the parameter is copied starting from the 5" 4-byte field.

i nsertedEdge Optional output parameter to contain the address of the inserted edge
within the edge set.

Discussion

The function Gr aphAddEdge adds an edge to the graph given the starting and the
ending vertices. The function returns the index of the inserted edge, which isthe value
of the second 4-byte field of the free cell.

The function reports an error if

* theedge that connects the vertices already exists; in this case graph orientation is
taken into account;

® apointer isNULL or indicesareinvalid;

* some of vertices do not exist, that is, not checked when the pointers are passed to
vertices, or

14-47

OpenCV Reference Manual Basic Sructures and Operations Reference 14

* thestarting vertex is equal to the ending vertex, that is, it isimpossible to create
loops from a single vertex.

The function reports an error, if input vertices do not belong to the graph, that makesiit
safer than Gr aphAddEdgeBy Pt r, but less efficient.

GraphAddEdgeByPtr
Adds edge to graph.

int cvG aphAddEdgeByPtr(CvG aph* graph, CvG aphVtx* startVtx, CvG aphVtx*
endVt x, CvGraphEdge* edge, CvGraphEdge** insertedEdge=0);

gr aph Graph.

start Vtx Pointer to the starting vertex of the edge.

endVt x Pointer to the ending vertex of the edge.

edge Optional input parameter, initialization datafor the edge. If not NULL,

the parameter is copied starting from the 5" 4-byte field.

i nsertedEdge Optional output parameter to contain the address of the inserted edge
within the edge set.

Discussion

Thefunction Gr aphAddEdgeByPt r adds an edge to the graph given the starting and the
ending vertices. The function returns the index of the inserted edge, which isthe value
of the second 4-byte field of the free cell.

The function reports an error if

* theedge that connects the vertices already exists; in this case graph orientation is
taken into account;

® apointer isNULL or indicesareinvalid;

* some of vertices do not exist, that is, not checked when the pointers are passed to
vertices, or

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

* thestarting vertex is equal to the ending vertex, that is, it isimpossible to create
loops from a single vertex.

The function is more efficient than G aphAddEdge but less safe, because it does not
check whether the input vertices belong to the graph.

GraphRemoveEdge

Removes edge from graph.

voi d cvG aphRenmoveEdge(CvGraph* graph, int startldx, int endldx);

gr aph Graph.

start | dx Index of the starting vertex of the edge.
endl dx Index of the ending vertex of the edge.
Discussion

The function Gr aphRermmoveEdge removes an edge from the graph that connects given
vertices. If the graph is oriented, the vertices must be passed in the appropriate order.
The function reports an error if any of the vertices or edges between them do not exist.

The function reports an error, if input vertices do not belong to the graph, that makesiit
safer than Gr aphRenoveEdgeBy Pt r, but less efficient.

GraphRemoveEdgeByPtr

Removes edge from graph.

voi d cvG aphRemobveEdgeByPtr (CvG aph* graph, CvGraphVt x* startVtx, CvG aphVtx*

endVtx);
gr aph Graph.
start Vit x Pointer to the starting vertex of the edge.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

endVt x Pointer to the ending vertex of the edge.

Discussion

The function Gr aphRenmoveEdgeBy Pt r removes an edge from the graph that connects
given vertices. If the graph is oriented, the vertices must be passed in the appropriate
order. The function reports an error if any of the vertices or edges between them do not
exist.

The function is more efficient than G aphRenoveEdge but less safe, because it does
not check whether the input vertices belong to the graph.

FindGraphEdge
Finds edge in graph.

CvGraphEdge* cvFi ndGraphEdge(CvG aph* graph, int startldx, int endldx);

gr aph Graph.

start | dx Index of the starting vertex of the edge.
endl dx Index of the ending vertex of the edge.
Discussion

The function Fi ndG aphEdge findsthe graph edge that connects given vertices. If the
graph is oriented, the vertices must be passed in the appropriate order. Function returns
NULL if any of the vertices or edges between them do not exist.

The function reports an error, if input vertices do not belong to the graph, that makesit
safer than Fi ndGr aphEdgeByPt r, but less efficient.

14-50

OpenCV Reference Manual Basic Sructures and Operations Reference 14

FindGraphEdgeByPtr
Finds edge in graph.

CvGr aphEdge* cvFi ndG aphEdgeByPtr(CvGraph* graph, CvG aphVtx* startVtx,
CQvG aphVt x* endVt x);

gr aph Graph.

start Vit x Pointer to the starting vertex of the edge.
endVt x Pointer to the ending vertex of the edge.
Discussion

Thefunction Fi ndG aphEdgeByPt r findsthe graph edge that connects given vertices.
If the graph is oriented, the vertices must be passed in the appropriate order. Function
returns NULL if any of the vertices or edges between them do not exist.

The function is more efficient than Fi ndG aphEdge but less safe, because it does not
check whether the input vertices belong to the graph.

GraphVtxDegree
Finds edge in graph.

int cvG aphVtxDegree(CvG aph* graph, int vtxldx);

gr aph Graph.
vt X Pointer to the graph vertex.
Discussion

The function Gr aphVt xDegr ee counts the edges incident to the graph vertex, both
incoming and outcoming, and returns the result. To count the edges, the following code
isused:

CvG aphEdge* edge = vertex->first; int count = O;

14-51

OpenCV Reference Manual Basic Sructures and Operations Reference 14

whi l e(edge) {

edge = CV_NEXT_CGRAPH_EDGE(edge, vertex);

count ++;

}.

The macro CV_NEXT_GRAPH_EDGE(edge, vertex) returnsthe next edge after the
edge incident to the vertex.

The function reports an error, if input vertices do not belong to the graph, that makesit
safer than Gr aphVit xDegr eeByPt r, but less efficient.

GraphVixDegreeByPtr
Finds edge in graph.

int cvG aphVtxDegreeByPtr(CvG aph* graph, CvG aphVtx* vtx);

gr aph Graph.
vt X Pointer to the graph vertex.
Discussion

The function Gr aphVt xDegr eeByPt r counts the edges incident to the graph vertex,
both incoming and outcoming, and returns the result. To count the edges, the following
code is used:

CvGraphEdge* edge = vertex->first; int count = O;

whi l e(edge) {

edge = CV_NEXT_CGRAPH _EDGE(edge, vertex);

count ++;

}.

The macro CV_NEXT_GRAPH_EDGE(edge, vertex) returnsthe next edge after the
edge incident to the vertex.

The function is more efficient than Gr aphVt xDegr ee but less safe, because it does not
check whether the input vertices belong to the graph.

14-52

OpenCV Reference Manual Basic Sructures and Operations Reference 14

ClearGraph
Clears graph.

void cvC earGaph(CvG aph* graph);
gr aph Graph.
Discussion

The function C ear G aph removes al the vertices and edges from the graph. Similar
to the function d ear Set , this function takes o(1) time.

GetGraphVtx

Finds graph vertex by index.

CvG aphVt x* cvGet G aphVt x(CvG aph* graph, int vtxldx);

gr aph Graph.
vt x| dx Index of the vertex.
Discussion

Thefunction Get Graphvt x findsthe graph vertex by index and returns the pointer to it
or, if not found, to afree cell at thisindex. Negative indices are supported.

GraphVixldx

Returns index of graph vertex.

int cvG aphvt xl dx(CvG aph* graph, CvG aphVtx* vtx);

u
intgl. 1453

OpenCV Reference Manual Basic Sructures and Operations Reference 14

gr aph Graph.
vt X Pointer to the graph vertex.
Discussion

Thefunction Gr aphVvt x1 dx returnsthe index of the graph vertex by setting pointers to
it.

GraphEdgeldx
Returnsindex of graph edge.

i nt cv@G aphEdgel dx(CvGraph* graph, CvG aphEdge* edge);

gr aph Graph.
edge Pointer to the graph edge.
Discussion

The function Gr aphEdgel dx returns the index of the graph edge by setting pointersto
it.

Graphs Data Structures

Example 14-11 CvGraph Structure Definition

#defi ne CV_GRAPH_FI ELDS() \
CV_SET_FI ELDS()
CvSet * edges;

typedef struct _CvG aph

{

—

CV_GRAPH_FI ELDS()
}
ovGr aph;

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

In OOP terms, the graph structure is derived from the set of vertices and includes a set
of edges. Besides, special datatypes exist for graph vertices and graph edges.

Example 14-12 Definitions of CvGr aphEdge and CvG aphVt x Structures
#defi ne CV_GRAPH_EDGE_FI ELDS() \

struct _CvG aphEdge* next[2]; \
struct _CvG aphVertex* vtx[2];

#defi ne CV_GRAPH VERTEX FIELDS() \
struct _CvG& aphEdge* first;

typedef struct _CvG aphEdge
{ CV_GRAPH_EDGE_FI ELDS()
]E,\/GraphEdge;

typedef struct _CvG aphVertex
{ CV_GRAPH_VERTEX_FI ELDS()
]E,\/Grapthx;

u
intgl. 1455

OpenCV Reference Manual

Basic Sructures and Oper ations Reference 14

Matrix Operations Reference

Example 14-13 CvMat Structure Definition

typedef struct CvMat

nunber of rows
nunber of cols
type of matrix

int rows; /1

int cols; /1

CvMat Type type; [/

int step; /1l not used
uni on

float* fl; //pointer to the float data

doubl e*

} dat a;
} CvVat

db; //pointer to double-precision data

Example 14-14 CvMat Arr ay Structure Definition

typedef struct CvMat Array
{

int rows;
int cols;
int type;
int step;
i nt count;
uni on

float*
float*

/I nunber of rows

/I nunber pf cols

/'l type of matrices

/1 not used

/'l number of matrices in aary

fl;
db;

}data; // pointer to matrix array data

} CvMat Ar ray

Alloc

Allocates memory for matrix data.

void cvmAl | oc (CvMat *

mat

mat) ;
Pointer to the matrix for which memory must be allocated.

intel.

14-56

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Al | oc alocates memory for the matrix data.

AllocArray

Allocates memory for matrix array data.

void cvmAl | ocArray (CvMat Array* matAr);
mat Ar Pointer to the matrix array for which memory must be allocated.

Discussion

Thefunction Al | ocArray allocates memory for the matrix array data.

Free
Frees memory allocated for matrix data.

void cvnFree (CvMat* mat);
mat Pointer to the matrix.

Discussion

The function Fr ee releases the memory allocated by the function Al | oc.

FreeArray
Frees memory allocated for matrix array data.

void cvnFreeArray (Cviat* matAr);

u
intgl. 1457

OpenCV Reference Manual Basic Sructures and Operations Reference 14

mat Ar Pointer to the matrix array.

Discussion

The function Fr eeArray releasesthe memory allocated by the function Al | ocArr ay.

Add

Computes sum of two matrices.

void cvmAdd (CvMat* A, CvMat* B, CvMat* C);

A Pointer to the first source matrix.

B Pointer to the second source matrix.
C Pointer to the destination matrix.
Discussion

The function Add adds the matrix A to B and stores the result in C.

(C:A+B,Cij :Aij+Bij).

Sub

Computes difference of two matrices.

void cvnmSub (CviMat* A, CvMat* B, CvMat* C);

A Pointer to the first source matrix.

B Pointer to the second source matrix.
C Pointer to the destination matrix.
Discussion

The function Sub subtracts the matrix B from the matrix A and stores the result in C.

u
intgl. 1458

OpenCV Reference Manual Basic Sructures and Operations Reference 14

(C=A-BC; =A;-B).

Scale
Multiplies matrix by scalar value.

void cvnScale (CvMat* A CviMat* B, double al pha);

A Pointer to the source matrix.

B Pointer to the destination matrix.
al pha Scale factor.

Discussion

The function scal e multiplies every element of the matrix by a scalar value

B=ocA,Bij =ocAij.

DotProduct

Calculates dot product of two vectorsin
Euclidian metrics.

doubl e cvnDot Product (Cviat* A, CvMat* B);

A Pointer to the first source vector.
B Pointer to the second source vector.
Discussion

The function Dot Product calculates and returns the Euclidean dot product of two
vectors.

DP = A-B = YA B
i

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

CrossProduct
Calculates cross product of two 3D vectors.

voi d cvnCrossProduct (CvMat* A CviMat* B, CvMat* C);

A Pointer to the first source vector.

B Pointer to the second source vector.
C Pointer to the destination vector.
Discussion

The function Cr ossProduct calculates the cross product of two 3D vectors:

C = AxB, (C; =A,B3—A3B,, C, = A;B; —ABy, Co= AB,—AB,) .

Mul

Multiplies matrices.

void cvmwl (Cviat* A, CvMat* B, CvMat* C);

A Pointer to the first source matrix.

B Pointer to the second source matrix.
C Pointer to the destination matrix
Discussion

The function vul multiplies SrcA by SrcB and stores the result in Dst .
C=AB,Cj = YA B .
k

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

MulTransposed

Calculates product of matrix and transposed
matrix.

voi d cvmMul Transposed (Cviat* A, CvMat* B, int order);

A Pointer to the source matrix.

B Pointer to the destination matrix.
or der Order of multipliers.
Discussion

The function Mul Tr ansposed calculates the product of A and its transposition.

The function evaluates B = A'A if or der isnon-zero, B = AA" otherwise.

Transpose
Transposes matrix.

voi d cvnmlranspose (CvMat* A, CvMat* B);

A Pointer to the source matrix.
B Pointer to the destination matrix.
Discussion

The function Tr anspose transposes A and stores result in B.

.
B=A,B, =A;.

u
intgl. 1461

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Invert
Inverts matrix.

void cvm nvert (Cvivat* A, CviMat* B);
Pointer to the source matrix.
B Pointer to the destination matrix.

Discussion

Thefunction | nvert inverts A and storesthe result in B.

B=AY AB=BA=1,

Trace
Returns trace of matrix.

doubl e cvmlrace (Cviat* A);
A Pointer to the source matrix.

Discussion

Thefunction Tr ace returns the sum of diagonal elements of the matrix A.

”A:ZAH-
i

Det

Returns deter minant of matrix.

doubl e cvnDet (CvMat* A);

u
intgl. 1462

OpenCV Reference Manual Basic Sructures and Operations Reference 14

A Pointer to the source matrix.

Discussion

The function Det returns the determinant of the matrix A.

Copy

Copies one matrix to another.

void cvnmCopy (Cvhmat* A, CvMat* B);

A Pointer to the source matrix.
B Pointer to the destination matrix.
Discussion

The function Copy copiesthe matrix A to the matrix B.

B=AB; = Aj.

SetZero

Sets matrix to zero.

void cvnBetZero (CvMat* A);
A Pointer to the matrix to be set to zero.

Discussion

The function Set Zer o sets the matrix to zero.

A=0A; =0.

u
intgl. 1463

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Setldentity
Sets matrix to identity.

void cvnBetldentity (CvMat* A);
A Pointer to the matrix to be set to identity.

Discussion
Thefunction Set I dent ity setsthe matrix to identity.

Azl’Ai' =9 .= 1". :.J i
! ' 0,i #j

Mahalonobis

Calculates Mahalonobis distance between
vectors.

doubl e cvmMvahal onobis (CvMat* A, CvMat* B, CvMat* T);

A Pointer to the first source vector.

B Pointer to the second source vector.

T Pointer to the inverse covariance matrix.
Discussion

The function Mahal onobi s calculates the weighted distance between two vectors and
returnsit:

dist = JZTij(Ai ~B)(A -B)).
i

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

SVD

Calculates singular value decomposition.

void cvnSVD (Cvhat* A CvMat* V, CvMat* D);

A Pointer to the source matrix.

\Y Pointer to the matrix where the orthogonal matrix is saved.
D Pointer to the matrix where the diagonal matrix is saved.
Discussion

Thefunction SVD decomposes the source matrix to product of two orthogonal and one
diagonal matrices.

A = U'DV, where U is an orthogonal matrix stored in A, Dis adiagonal matrix, and vis
another orthogonal matrix. If A isasguare matrix, Uand Vv are the same.

% NOTE. The function SVD destroys the source matrix A. Therefore, in
e case the source matrix is needed after decomposition, cloneit before
running this function.

EigenVV

Computes eigenvalues and eigenvectors of
symmetric matrix.

voi d cvnEi genW (CvMat* Src, Cviat* evects, Cviat* evals, Double eps);

Src Pointer to the source matrix.
evect s Pointer to the matrix where eigenvectors must be stored.
eval s Pointer to the matrix where eigenvalues must be stored.

u
intgl. 1465

OpenCV Reference Manual Basic Sructures and Operations Reference 14

eps Accuracy of diagonalization.

Discussion

The function Ei genvv computes the eigenvalues and eigenvectors of the matrix Sr c
and stores them in the parameterseval s and evects correspondingly. Jacobi method
isused. Eigenvectors are stored in successive rows of matrix eigenvectors. The
resultant eigenvalues are in descending order.

% NOTE. The function EigenVV destroys the source matrix Src.
= Therefore, if the source matrix is needed after eigenvalues have been
calculated, clone it before running the function EigenV\V.

PerspectiveProject
Implements general transform of 3D vector array.

voi d cvnPerspectiveProject (CvMat* A CviMatArray src, CvMatArray dst);

A 4x4 matrix.

src Source array of 3D vectors.

dst Destination array of 3D vectors.
Discussion

The function Per spect i vePr oj ect maps every input 3D vector (x,y,z)" to
X'/w,y'/w, z'/W)T,Whel’e

W, W
oy, zow) = mat x(x,y,z, 1) andw={ W20

Lw=0"

14-66

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Drawing Primitives Reference

Line
Draws simple or thick line segment.

void cvLine(Ipllmge* inmg, CvPoint ptl, CvPoint pt2, int color, int
thi ckness=1);

i mg Image.

pt 1 First point of the line segment.

pt 2 Second point of the line segment.

col or Line color (RGB) or brightness (grayscale image).
t hi ckness Line thickness.

Discussion

The function Li ne drawsthe line segment between pt 1 and pt 2 pointsin the image.
Thelineis clipped by the image or ROI rectangle. The Bresenham algorithm is used
for simple line segments. Thick lines are drawn with rounding endings. To specify the
line color, the user may use the macrocv_RGB (r, g, b) that makesa32-bit color value
from the color components.

LineAA

Draws antialiased line segment.

voi d cvLi neAA(Ipllmge* inmg, CvPoint ptl, CvPoint pt2, int color, int scale=0
)
i my Image.
pt 1 First point of the line segment.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

pt 2 Second point of the line segment.

col or Line color (RGB) or brightness (grayscale image).
scal e Number of fractional bits in the end point coordinates.
Discussion

Thefunction Li neAA drawstheline segment between pt 1 and pt 2 pointsin the image.
Thelineis clipped by the image or ROI rectangle. Drawing algorithm includes some
sort of Gaussian filtering to get a smooth picture. To specify the line color, the user
may use the macro cv_RGB (r, g, b) that makesa 32-bit color value from the color
components.

Rectangle
Draws simple, thick or filled rectangle.

voi d cvRectangl e(I pllnmge* inmy, CvPoint ptl, CvPoint pt2, int color, int
t hi ckness);

i my Image.

pt 1 One of the rectangle vertices.

pt 2 Opposite rectangle vertex.

col or Line color (RGB) or brightness (grayscale image).
t hi ckness Thickness of lines that make up the rectangle.
Discussion

The function Rect angl e draws arectangle with two opposite cornerspt 1 and pt 2. If
the parameter t hi ckness is positive or zero, the outline of the rectangle is drawn with
that thickness, otherwise afilled rectangleis drawn.

14-68

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Circle
Draws simple, thick or filled circle.

void cvCircle(I pll mage* i myg, CvPoint center, int radius, int color,
int thickness=1);

i ng Image where the lineis drawn.

center Center of the circle.

radi us Radius of the circle.

col or Circle color (RGB) or brightness (grayscae image).

t hi ckness Thickness of the circle outline if positive, otherwise indicates that a

filled circleis to be drawn.

Discussion

Thefunction Ci rcl e drawsasimpleor filled circle with given center and radius. The
circleis clipped by ROI rectangle. The Bresenham algorithm is used both for simple
and filled circles. To specify the circle color, the user may use the macrocv_RGB (r, g,
b) that makes a 32-bit color value from the color components.

Ellipse

Draws simple or thick elliptic arc or fills ellipse
sector.

void cvEl lipse(I pllmage* img, CvPoint center, CvSize axes, doubl e angl e,
doubl e start Angle, double endAngle, int color, int thickness=1);

i my Image.

center Center of the ellipse.
axes Length of the ellipse axes.
angl e Rotation angle.

u
intgl. 1469

OpenCV Reference Manual Basic Sructures and Operations Reference 14

start Angl e Starting angle of the elliptic arc.

endAngl e Ending angle of the elliptic arc.

col or Ellipse color (RGB) or brightness (grayscale image).
t hi ckness Thickness of the ellipse arc.

Discussion

ThefunctionEl 1 i pse drawsasimple or thick elliptic arc or fillsan ellipse sector. The
arcis clipped by ROI rectangle. The generalized Bresenham agorithm for conic
section isused for simpleelliptic arcs here, and piecewise-linear approximationis used
for antialiased arcs and thick arcs. All the angles are given in degrees. Figure 14-3
shows the meaning of the parameters.

Figure 14-3 Parameters of Elliptic Arc

First Ellipse Axis

Second Ellipse Axis

Drawn Arc

Starting Angle of the Arc

Ending Angle of the Arc

’ Rotation Angle

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

EllipseAA
Draws antialiased elliptic arc.

voi d cvEl i pseAA(| pllmage* i mg, CvPoint center, CvSi ze axes, doubl e angl e,
doubl e start Angl e, double endAngle, int color, int scale=0);

i my Image.

center Center of the ellipse.

axes L ength of the ellipse axes.

angl e Rotation angle.

start Angl e Starting angle of the elliptic arc.

endAngl e Ending angle of the elliptic arc.

col or Ellipse color (RGB) or brightness (grayscale image).

scal e Specifies the number of fractional bitsin the center coordinates and
axes sizes.

Discussion

Thefunction El | i pseAA draws an antialiased elliptic arc. The arc is clipped by ROI
rectangle. The generalized Bresenham algorithm for conic section is used for ssimple
elliptic arcs here, and piecewise-linear approximation is used for antialiased arcs and
thick arcs. All the angles are in degrees. Figure 14-3 shows the meaning of the
parameters.

FillPoly

Fills polygons interior.

void cvFillPoly(I plImage* ing, CvPoint** pts, int* npts, int contours,
int color);

i my Image.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

pts Array of pointersto polygons.

npt s Array of polygon vertex counters.

contours Number of contours that bind the filled region.

col or Polygon color (RGB) or brightness (grayscal e image).
Discussion

Thefunction Fi | | Pol y fills an area bounded by severa polygonal contours. The
function fills complex areas, for example, areas with holes, contour self-intersection,
etc.

FillConvexPoly

Fills convex polygon.

void cvFill ConvexPoly(Ipllmge* ing, CvPoint* pts, int npts, int color);

i my Image.

pts Array of pointersto asingle polygon.

npts Polygon vertex counter.

col or Polygon color (RGB) or brightness (grayscal e image).
Discussion

The function Fi | | ConvexPol y fills convex polygon interior. This function is much
faster than the function Fi | | Pol y and fills not only the convex polygon but any
monotonic polygon, that is, a polygon whose contour intersects every horizonta line
(scan line) twice at the most.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

PolyLine

Draws simple or thick polygons.

voi d cvPol yLine(Ipllmage* i mg, CvPoint** pts, int* npts, int contours,
isClosed, int color, int thickness=1);

i my Image.

pts Array of pointersto polylines.

npts Array of polyline vertex counters.

contours Number of polyline contours.

i sCl osed Indicates whether the polylines must be drawn closed. If closed, the
function draws the line from the last vertex of every contour to the
first vertex.

col or Polygon color (RGB) or brightness (grayscal e image).

t hi ckness Thickness of the polyline edges.

Discussion

The function Pol yLi ne draws aset of simple or thick polylines.

PolyLineAA
Draws antialiased polygons.

voi d cvPol yLi neAA(| pl | mage* i ng, CvPoi nt** pts, int* npts, int contours,
isClosed, int color, int scale=0);

i my Image.

pts Array of pointersto polylines.
npts Array of polyline vertex counters.
contours Number of polyline contours.

L}
intel.

OpenCV Reference Manual

Basic Sructures and Oper ations Reference 14

i sCl osed

col or

scal e

Discussion

Indicates whether the polylines must be drawn closed. If closed, the
function draws the line from the last vertex of every contour to the
first vertex.

Polygon color (RGB) or brightness (grayscal e image).

Specifies number of fractional bits in the coordinates of polyline
vertices.

The function Pol yLi neAA draws a set of antialiased polylines.

InitFont

Initializes font structure.

void cvlnitFont(CvFont* font, CvFontFace fontFace, float hscale, float

vscal e

font

f ont Face

hscal e

vscal e

italicScal e

t hi ckness

float italicScale, int thickness)

Pointer to the resultant font structure.

Font name identifier. Only the font Cv_FONT_VECTORO is currently
supported.

Horizontal scale. If equal to 1. of , the characters have the original
width depending on the font type. If equal to 0. 5f , the characters are
of half the original width.

Vertical scale. If equal to 1. of , the characters have the original
height depending on thefont type. If equal to 0. 5f , the charactersare
of half the original height.

Approximate tangent of the character slope relative to the vertical
line. Zero value means a non-italic font, 1. 0f means ~45x slope, etc.

Thickness of lines composing letters outlines. The function cvLi ne
isused for drawing letters.

14-74

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

Thefunction | ni t Font initializes the font structure that can be passed further into text
drawing functions. Although only one font is supported, it is possible to get different
font flavors by varying the scale parameters, slope, and thickness.

PutText
Draws text string.

voi d cvPut Text (| pl I mage* i ng, const char* text, CvPoint org, CvFont* font, int

color);
i ng Input image.
t ext String to print.
org Coordinates of the bottom-left corner of the first |etter.
f ont Pointer to the font structure.
col or Text color (RGB) or brightness (grayscal e image).
Discussion

The function Put Text renders the text in the image with the specified font and color.
The printed text is clipped by ROI rectangle. Symbols that do not belong to the
specified font are replaced with the rectangle symbol.

GetTextSize
Retrieves width and height of text string.

voi d cvGet Text Si ze(CvFont* font, const char* textString, CvSize* textSize,
int* ymn);
f ont Pointer to the font structure.

u
intel. 1475

OpenCV Reference Manual Basic Sructures and Operations Reference 14

textString Input string.

t ext Si ze Resultant size of the text string. Height of the text does not include
the height of character parts that are bel ow the baseline.

ymn Lowest y coordinate of the text relative to the baseline. Negative, if
the text includes such charactersasg, j, p, q, V, €tc., and zero
otherwise.

Discussion

The function Get Text Si ze calculates the binding rectangle for the given text string
when a specified font is used.

Utility Reference

ADbsDiff

Calculates absol ute difference between two
images.

void cvAbsD ff(Ipllmage* srcA |Ipllnmage* srcB, |pllmage* dst);

SrcA First compared image.
srcB Second compared image.
dst Destination image.
Discussion

The function AbsDi f f calculates absolute difference between two images.

dst (x,y) = abs(srcA(x,y)—-srcB(x,y)).

u
intel. 1476

OpenCV Reference Manual Basic Sructures and Operations Reference 14

ADbsDiffS

Calculates absol ute difference between image
and scalar.

voi d cvAbsDi ffS(Ipllnage* srcA, |pllmge* dst, double value);

srcA Compared image.
dst Destination image.
val ue Value to compare.
Discussion

The function AbsDi f f S calculates absol ute difference between an image and a scalar.

dst (x,y) = abs(srcA(x,y)—val ue).

MatchTemplate
Fills characteristic image for given image and

template.
voi d cvMat chTenpl ate(| pllmage* ing, |pllnmage* tenpl, |pllnmage* result,
CvTenpl Mat chMet hod net hod);
i ng Image where the search is running.
t enpl Searched template; must be not greater than the source image. The

parametersi ng and t enpl must be single-channel images and have
the same depth (1 PL_DEPTH_8U, | PL_DEPTH_8S, or
| PL_DEPTH_32F).

resul t Output characteristic image. It has to be a single-channel image with
depth equal to | PL_DEPTH_32F. If the parameter i mg has the size of
Wx H and the template has the size wx h, the resulting image must
have the size or selected ROl W-w+1xH-h+1.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

met hod Specifies the way the template must be compared with image
regions.

Discussion

The function Mat chTenpl at e implements a set of methods for finding the image
regions that are similar to the given template.

Given a source image with wx H pixels and atemplate with wx h pixels, the resulting
image has w-w+1xH-h +1 pixels, and the pixel valuein each location (x, y)
characterizes the similarity between the template and the image rectangle with the
top-left corner at (x, y) and the right-bottom cornerat (x + w - 1,y + h - 1).
Similarity can be calculated in several ways:

Squared difference (met hod == CV_TM SQDI FF)

h-1w-1

SeGY) = YT ITOCY) 1 (x XLy +y)1P,

y'=0x'=0
wherel (x, y) isthevalue of theimage pixel inthelocation (x, y), while T(x, y) isthe
value of the template pixel in the location (x, y) .
Normalized squared difference (met hod == CV_TM SQDI FF_NORVED)

h-1w-1
>3 ITOGY) =1 (x+xy)1
S(x,y) = —=L=2=0

h—1w-1 h—1w-1 '
A/Z T Ty S T Ly +y)?

y'=0x'=0 y'=0x'=0

Cross correlation (met hod == CV_TM_CCORR):

h-1w-1

CoGy) = 3 > TOGYI (x+xLy +y).
y'=0x'=0

Cross correlation, normalized (met hod == CV_TM_CCORR_NORMED):

14-78

OpenCV Reference Manual Basic Sructures and Operations Reference 14

h-1w-1
DY T YO (X XLy +yY)
- y'=0x'=0
Cx.y) h—1 w—1 h—1 w—1 ’
Jz Y TGY) Y Y Ly +y)?
y'=0x'=0 y'=0x'=0
Correlation coefficient (met hod == CV_TM_CCOEFF):
h-1w-1
ROGY) = 3 T YR +xy +yY),
y'=0x'=0

where T(x',y") = T(x,y) =T, I'(x +x,y +y") = | (x +x',y +y) =T (x,y), and where T
stands for the average value of pixelsin the template raster and ' (x,y) standsfor the
average value of the pixelsin the current window of the image.

Correlation coefficient, normalized (met hod == CV_TM CCOEFF_NORVMED):

h-1w-1
D> TLYIF(x+xLy +y)
R(x.y) = e

h—1w-1 h—1w-1 '
Jz Y TEY)E Y Y Fxaxhy +y)

y'=0x'=0 y'=0x'=0

After the function Mat chTenpl at e returns the resultant image, probable positions of
the template in the image could be located as the local or global maximums of the
resultant image brightness.

14-79

OpenCV Reference Manual Basic Sructures and Operations Reference 14

CvtPixToPlane

Divides pixel image into separate planes.

voi d cvCvt Pi xToPl ane(I pllmge* src, |pllmge* dstO, |pllmge* dstl, |pllmge*
dst2, Ipllnmage* dst3);

src Source image.
dst0...dst3 Destination planes.

Discussion

The function cvt Pi xToPl ane divides a color image into separate planes. Two modes
are available for the operation. Under the first mode the parametersdst 0, dst 1, and
dst 2 are non-zero, while dst 3 must be zero for the three-channel source image. For
the four-channel source image all the destination image pointers are non-zero. In this
case the function splits the three/four channel image into separate planes and writes
them to destination images. Under the second mode only one of the destination images
isnot NULL; in this case, the corresponding plane is extracted from the image and
placed into destination image.

CvtPlaneToPix

Composes color image from separate planes.

voi d cvCvt Pl aneToPi x(| pl I mage* srcO, Ipllmge* srcl, |pllmage* src2,
I pl I mage* src3, |pllnmge* dst);

srcO0...src3 Source planes.
dst Destination image.

u
intgl. 1480

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

Thefunction cvt Pl aneToPi x composes acolor image from separate planes. If the dst
has three channels, then sr c0, src1, and sr c2 must be non-zero, otherwise dst must
have four channels and all the source images must be non-zero.

ConvertScale

Converts one image to another with linear
transformation.

voi d cvConvert Scal e(|Ipllnmage* src, |Ipllmge* dst, double scale, double
shift);

src Source image.

dst Destination image.

scal e Scale factor.

shift Value added to the scaled source image pixels.
Discussion

The function Convert Scal e applieslinear transform to all pixelsin the source image
and puts the result into the destination image with appropriate type conversion. The
following conversions are supported:

| PL_DEPTH_8U <~ | PL_DEPTH_32F,
| PL_DEPTH 8U <= | PL_DEPTH_16S,
| PL_DEPTH_8S <> | PL_DEPTH_32F,
| PL_DEPTH_8S <> | PL_DEPTH_16S,
| PL_DEPTH_16S <= | PL_DEPTH_32F,
| PL_DEPTH_32S <= | PL_DEPTH_32F.

Applying the following formula converts integer types to float:

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

dst(x,y) = (float)(src(x,y)*scale + shift),
while the following formula does the other conversions:
dst(x,y) = saturate(round(src(x,y)*scale + shift)),

wherer ound function converts the floating-point number to the nearest integer number
and sat ur at e function performs as follows:

* Destination depthis| PL_DEPTH_8U: sat ur at e(x)
255 : X

* Destination depthis| PL_DEPTH_8S: sat ur at e(x)
127 2 127 : x

* Destination depthis| PL_DEPTH_16S: sat ur at e(x)
X > 32767 ? 32767 : X

* Destination depthis| PL_DEPTH_32S: sat ur at e(x)

X <0?0: x >2557

X < -128 ? =128 : x >

X < -32768 ? -32768 :

1
X

InitLinelterator
Initializes line iterator.

int cvinitLinelterator(Ipllmge* inmg, CvPoint ptl, CvPoint pt2,

CvlLi

nelterator* linelterator);

i my Image.
pt1l Starting the line point.
pt 2 Ending the line point.

linelterator Pointer to thelineiterator state structure.

Discussion

Thefunction I ni t Li nel t er at or initializesthe lineiterator and returns the number of
pixels between two end points. Both points must be inside the image. After the iterator
has beeninitialized, all the points on the raster line that connects the two ending points
may be retrieved by successive calls of Cv_NEXT_LI NE_PO NT point. The points on the

14-82

OpenCV Reference Manual Basic Sructures and Operations Reference 14

line are calculated one by one using the 8-point connected Bresenham algorithm. See
Example 14-15 for the method of drawing the line in the RGB image with the image
pixels that belong to the line mixed with the given color using the XOR operation.

Example 14-15 Drawing Line Using XOR Operation

voi d put_xor _line(Ipllmge* ing, CvPoint ptl, CvPoint pt2, int r, int

g, int b) {
CvLinelterator iterator;
int count = chnitLi nelterator(ing, ptl, pt2, & terator);

for(int i =0; i <count; i++){
iterator. r[O] A= (uchar)b;
iterator.ptr[1] ~= (uchar)g;
iterator.ptr[2] ~= (uchar)r;
CV_NEXT_ LI NE_PO NT(|terator)

}

}

SampleLine

Reads raster line to buffer.

i nt cvSanpl eLine(Ipllmge* ing, CvPoint ptl, CvPoint pt2, void* buffer);

i mg Image.

pt1l Starting the line point.

pt 2 Ending the line point.

buf f er Buffer to store the line points; must have enough size to store

MAX(| pt2.x - ptl.x] + 1,|pt2.y - ptl.y|+1) points.

Discussion

The function Sanpl eLi ne implements a particular case of application of lineiterators.
The function reads all the image points lying on the line between pt 1 and pt 2,
including the ending points, and stores them into the buffer.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

GetRectSubPix

Retrieves raster rectangle fromimage with
sub-pixel accuracy.

voi d cvGet Rect SubPi x(I pl I mage* src, |pllnmage* rect, CvPoint2D32f center);

src Source image.
rect Extracted rectangle; must have odd width and height.
center Floating point coordinates of the rectangle center. The center must be

inside the image.

Discussion

The function Get Rect SubPi x extracts pixels from src, if the pixel coordinates meet
the following conditions:

center.x —(widthrect-1)/2 <= x <= center.x + (widthrect-1)/2;
center.y -(heightrect-1)/2 <=y <= center.y +(heightrect-1)/2.

Since the center coordinates are not integer, bilinear interpolation is applied to get the
values of pixelsin non-integer locations. Although the rectangle center must be inside
the image, the whole rectangle may be partially occluded. In this case, the pixel values
are spread from the boundaries outside the image to approximate values of occluded
pixels.

bFastArctan

Calculates fast arctangent approximation for
arrays of abscissas and ordinates.

voi d cvbFast Acrtan(const float* y, const float* x, float* angle, int len);
y Array of ordinates.
X Array of abscissas.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

angl e Calculated angles of points(x[i],y[i]).
| en Number of elementsin the arrays.
Discussion

The function bFast Acr t an calculates an approximate arctangent value, the angle of
the point (x, y) . Theangleisin the range from 0° to 360°. Accuracy isabout 0.1°. For

point (0, 0) theresultant angleisO.

Sqgrt

Calculates sguare root of single float.

float cvSqgrt(float x);
X Scalar argument.

Discussion

Thefunction sqrt calculates square root of a single argument. The argument should
be non-negative, otherwise the result is unpredictable. The relative error is less than

9e- 6.

bSqrt

Calculates sguare root of array of floats.

void cvbSqrt(const float* x, float* y, int len);

X Array of arguments.
y Resultant array.
| en Number of elementsin the arrays.

u
intgl. 1495

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function cvbSqrt calculates the square root of an array of floats. The arguments
should be non-negative, otherwise the results are unpredictable. The relative error is
lessthan 3e- 7.

InvSqrt

Calculates inverse sguare root of single float.

float cv

InvSgrt(float x);
X Scalar argument.

Discussion

Thefunction | nvSgrt calculates the inverse square root of asingle float. The
argument should be positive, otherwise the result is unpredictable. The relative error is
lessthan 9e- 6.

binvSqgrt

Calculates inverse square root of array of floats.

void cvblnvSgrt(const float* x, float* y, int len);

X Array of arguments.

y Resultant array.

| en Number of elementsin the arrays.
Discussion

Thefunction bl nvsSgrt calculates the inverse square root of an array of floats. The
arguments should be positive, otherwise the results are unpredictable. The relative
error isless than 3e- 7.

14-86

OpenCV Reference Manual Basic Sructures and Operations Reference 14

bReciprocal
Calculates inverse of array of floats.

voi d cvbReci procal (const float* x, float* vy, int len);

X Array of arguments.

y Resultant array.

| en Number of elementsin the arrays.
Discussion

The function bReci procal calculates the inverse (1/ x) of arguments. The arguments
should be non-zero. The function gives a very precise result with the relative error less
than 1e- 7.

bCartToPolar

Calculates magnitude and angle for array of
abscissas and ordinates.

voi d cvbCartToPol ar(const float* y, const float* x, float* mag, float* angle,

int len);
y Array of ordinates.
X Array of abscissas.
mag Calculated magnitudes of points (x[i],y[i]).
angl e Calculated angles of points(x[i],y[i]).
| en Number of elementsin the arrays.

u
intgl. 1487

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function bCar t ToPol ar calculates the magnitude Jx[i 12+y[i 1* and the angle

arctan(y[i 1/x[i 1) of each point (x[i],y[i]). Theangleismeasured in degreesand
varies from 0° to 360°. The function is a combination of the functionsbFast Ar ct an
and bSqr t , so the accuracy is the same as in these functions. If pointers to the angle
array or the magnitude array are NULL, the corresponding part is not calculated.

bFastExp

Calculates fast exponent approximation for array
of floats.

voi d cvbFast Exp(const float* x, double* exp_x, int |len);

X Array of arguments.

exp_x Array of results.

| en Number of elementsin the arrays.
Discussion

The function bFast Exp calculates fast exponent approximation for each element of
the input array. The maximal relative error is about 7e- 6.

bFastLog

Calculates fast approximation of natural
logarithm for array of doubles.

voi d cvbFast Log(const double* x, float* log_x, int |len);
X Array of arguments.
| og_x Array of results.

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

| en Number of elementsin the arrays.

Discussion

The function bFast Log calculates fast logarithm approximation for each element of
the input array. Maximal relative error is about 7e- 6.

RandInit

Initializes state of random number generator.

voi d cvRandl nit(CvRandState* state, float |ower, float upper, int seed);

state Pointer to the initialized random number generator state.
| ower L ower boundary of uniform distribution.

upper Upper boundary of uniform distribution.

seed Initial 32-bit value to start a random sequence.
Discussion

The function Randl ni t initializes the st at e structure that is used for generating
uniformly distributed numbersin therange[| ower, upper). A multiply-with-carry
generator is used.

bRand

Fillsarray with random numbers.

voi d cvbRand(CvRandState* state, float* x, int len);

state Random number generator state.
X Destination array.
| en Number of elementsin the array.

u
intgl. 1489

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function bRand fillsthe array with random numbers and updates generator state.

Filllmage
Fillsimage with constant value.

void cvFilllmge(Ipllnmge* ing, double val);
i Ny Filled image.
val Vaueto fill theimage.
Discussion

ThefunctionFi | | | mage isequivalentto eitheri pl Set FP ori pl Set , depending on the
pixel type, that is, floating-point or integer.

RandSetRange

Sets range of generated random numbers without
reinitializing RNG state.

voi d cvRandSet Range(CvRandSt ate* state, double | ower, double upper);

state State of random number generator (RNG).
| ower New lower bound of generated numbers.
upper New upper bound of generated numbers.
Discussion

The function RandSet Range changes the range of generated random numbers without
reinitializing RNG state. For the current implementation of RNG the function is
equivalent to the following code:

L}
intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

unsi gned seed = state. seed;

unsigned carry = state.carry;
cvRandlnit(&state, |ower, upper, 0);
state. seed = seed;

state.carry = carry;

However, the function is preferable because of compatibility with the next versions of
the library.

KMeans
Splits set of vectors into given number of clusters.

void cvKMeans (int nunClusters, CvVect32f* sanples, int nunSanples, int
vecSize, CvTernCriteria terncrit, int* cluster);

nunC usters Number of required clusters.

sanpl es Pointer to the array of input vectors.

nunSanpl es Number of input vectors.

vecSi ze Size of every input vector.

terncrit Criteria of iterative algorithm termination.

cluster Characteristic array of cluster numbers, corresponding to each input
vector.

Discussion

The function KMveans iteratively adjusts mean vectors of every cluster. Termination
criteriamust be used to stop the execution of the algorithm. At every iteration the
convergence value is computed as follows:

K
Z |ol d_mean; —new_mean, ||2

i=1

u
intgl. 1491

OpenCV Reference Manual Basic Sructures and Operations Reference 14

The function terminatesif E<Terncrit .epsilon.

u
intgl. 1492

System Functions

This chapter describes system library functions.

Table 15-1 System Library Functions

Name Description

LoadPrinmtives Loads versions of functions that
are optimized for a specific
platform.

Cet Li braryl nfo Retrieves information about the
library.

LoadPrimitives

Loads optimized versions of functions for specific
platform.

int cvLoadPrimtives (char* dl |l Name, char* processorType);

dl | Name Name of dynamically linked library without postfix that
contains the optimized versions of functions
processor Type Postfix that specifies the platform type:

“wr” for Pentium® 4 processor, “A6” for Intel® Pentium® |1
processor, “Ms” for Intel® Pentium® |1 processor, NULL for
auto detection of the platform type.

u
intgl. 151

OpenCV Reference Manual System Functions 15

Discussion

Thefunction LoadPri mitives loadsthe versions of functions that are optimized for a
specific platform. The function isautomatically called before thefirst call to the library
function, if not called earlier.

GetLibraryInfo
Getsthe library information string.

void cvGetlLibrarylnfo (char** version, int* | oaded, char** dl| Nane);

version Pointer to the string that will receive the build date information; can
be NULL.
| oaded Postfix that specifies the platform type:

“w” for Pentium® 4 processor, “A6” for Intel® Pentium® 111
processor, “Ms” for Intel® Pentium® |1 processor, NULL for auto
detection of the platform type.

dl | Nane Pointer to the full name of dynamically linked library without path,
could be NULL.

Discussion

The function Get Li brar yl nf o retrievesinformation about the library: the build date,
the flag that indicates whether optimized DLLs have been loaded or not, and their
names, if loaded.

u
intgl. 152

OpenCV Reference Manual System Functions 15

u
intgl. 153

Bibliography 16

This bibliography provides alist of publications that might be useful to the Intel®
Computer Vision Library users. Thislist isnot complete; it serves only as a starting

point.
[Borgefors86]

[Bradskioo]

[Burtsi]

[Canny86]

[Davis97]

[DeMenthon92]

[Fitzgibbon95]

[Horn81]

GunillaBorgefors. Distance Transformations in Digital Images.
Computer Vision, Graphics and Image Processing 34, 344-371
(1986).

G. Bradski and J. Davis. Motion Segmentation and Pose Recognition
with Motion History Gradients. IEEE WACV'00, 2000.

P.J. Burt, T. H. Hong, A. Rosenfeld. Segmentation and Estimation of
Image Region Properties Through Cooperative Hierarchical
Computation. IEEE Tran. On SMC, Vol. 11, N.12, 1981, pp.
802-809.

J. Canny. A Computational Approach to Edge Detection, IEEE
Trans. on Pattern Analysis and Machine Intelligence, 8(6), pp.
679-698 (1986).

J. Davis and Bobick. The Representation and Recognition of Action
Using Temporal Templates. MIT MediaLab Technical Report 402,
1997.

Daniel F. DeMenthon and Larry S. Davis. Model-Based Object Pose
in 25 Lines of Code. In Proceedings of ECCV '92, pp. 335-343, 1992.

Andrew W. Fitzgibbon, R.B.Fisher. A Buyer’s Guide to Conic
Fitting. Proc.5t British Machine Vision Conference, Birmingham,
pp. 513-522, 1995.

Berthold K.P. Horn and Brian G. Schunck. Determining Optical
Flow. Artificial Intelligence, 17, pp. 185-203, 1981.

16-1

Bibliography 16

OpenCV Reference Manual

[Hu62] M. Hu. Visual Pattern Recognition by Moment Invariants, IRE
Transactions on Information Theory, 8:2, pp. 179-187, 1962.

[Jahne97] B. Jahne. Digital Image Processing. Springer, New York, 1997.

[Kass88] M. Kass, A. Witkin, and D. Terzopoulos. Shakes: Active Contour
Models, International Journal of Computer Vision, pp. 321-331,
1988.

[M ataso8] J.Matas, C.Galambos, J.Kittler. Progressive Probabilistic Hough
Transform. British Machine Vision Conference, 1998.

[Rosenfeld73] A. Rosenfeld and E. Johnston. Angle Detection on Digital Curves.
|EEE Trans. Computers, 22:875-878, 1973.

[RubnerJan98] Y. Rubner. C. Tomasi, L.J. Guibas. Metrics for Distributions with

[RubnerSept98]

[RubnerOct98]

[Serra8?]

[Schiele00]

[Suzuki85]

[Teh8g]

Applications to Image Databases. Proceedings of the 1998 IEEE
International Conference on Computer Vision, Bombay, India,
January 1998, pp. 59-66.

Y. Rubner. C. Tomasi, L.J. Guibas. The Earth Mover’s Distance as a
Metric for Image Retrieval. Technical Report STAN-CS-TN-98-86,

Department of Computer Science, Stanford University, September
1998.

Y. Rubner. C. Tomasi. Texture Metrics. Proceeding of the IEEE
International Conference on Systems, Man, and Cybernetics,
San-Diego, CA, October 1998, pp. 4601-4607.

http://robotics.stanf ord.edu/~rubner/publications.html

J. Serra. Image Analysis and Mathematical Morphology. Academic
Press, 1982.

Bernt Schiele and James L. Crowley. Recognition without
Correspondence Using Multidimensional Receptive Field
Histograms. In International Journal of Computer Vision 36 (1),
pp. 31-50, January 2000.

S. Suzuki, K. Abe. Topological Sructural Analysis of Digital Binary
Images by Border Following. CVGIPR, v.30, n.1. 1985, pp. 32-46.

C.H. Teh, R.T. Chin. On the Detection of Dominant Pointson
Digital Curves. - IEEE Tr. PAMI, 1989, v.11, No.8, p. 859-872.

16-2

1

OpenCV Reference Manual

Bibliography 16

[Trucco98]

[Williams92]

[Yuilleg9]

[Zhang96]

Emanuele Trucco, Alessandro Verri. Introductory Techniques for
3-D Computer Vision. Prentice Hall, Inc., 1998.

D. J. Williamsand M. Shah. A Fast Algorithm for Active Contours
and Curvature Estimation. CVGIP: Image Understanding, Vol. 55,
No. 1, pp. 14-26, Jan., 1992.
http://www.cs.ucf.edu/~Vvision/papers/shah/92/WI S92A .pdf.

A.Y.Yuille, D.S.Cohen, and PW.Hallinan. Feature Extraction from
Faces Using Deformable Templatesin CVPR, pp. 104-109, 1989.
Zhengyou Zhang. Parameter Estimation Techniques: A Tutorial with
Application to Conic Fitting, Image and Vision Computing Journal,
1996.

16-3

Williams92
Williams92

OpenCV Reference Manual Bibliography 16

L}
intel.

Supported |mage Attributes
and Operation Modes

A

The table below specifies what combinations of input/output parameters are accepted
by different OpenCV functions. Currently, the table describes only array-processing
functions, that is, functions, taking on input, output or both the structures | pl | mrage
and cvMat . Functions, working with complex datastructures, e.g., contour processing,
computational geometry, etc. are not included yet.

Format iscoded in form dept h , where dept h iscoded asnunber of bits{u|s|f},u

stands for "integer Unsigned", s stands for "integer Signed" and f stands for "Floating
point".

For example, 8u means 8-bit unsigned image or array, 32f means floating-point image
or array. 8u- 64f isashort formof 8u, 8s, 16s, 32s, 32f, 64f.

If afunction has severa input/output arrays, they al must have the same type unless
opposite is explicitly stated.

Word same in Output Format column means that the output array must have the same
format with input array[s]. Word inplace in Output Format column means that the
function changes content of one of the input arrays and thus produces the output. Word
n/a means that the function output is not an image and format information is not
applicable.

Mask parameter, if present, must have format 8u or 8s.

The following table includes only the functions that have raster images or matrices on
input and/or on outpult.

A-1

OpenCV Reference Manual Supported I mage Attributes and Operation Modes A

Table A-1 Image Atributes and Operation Modes for Array-Processing Functions

Number
of

Function Input Format Channels Output Format
AbsDi f f 8u - 64f 1-4 same
AbsDi ffS 8u - 64f 1-4 same
Acc src = 8u, 8s, 1,3 inplace

32f

acc = 32f (same 1-3

channels number as

Src)
Adapti veThreshol d 8u, 8s, 32f 1 same
Add 8u - 64f 1-4 same
AddS 8u - 64f 1-4 same
And 8u - 64f 1-4 same
AndS 8u - 64f 1-4 same
bCart ToPol ar 32f 1 32f
bFast Arct an 32f 1 32f
bFast Exp 32f 1 64f
bFast Log 64f 1 64f
bl nvSgrt 32f 1 32f
bRand none 1 32f
bReci procal 32f 1 32f
bSqrt 32f 1 32f
Cal cAf fi neFl owPyr LK img = 8u 1 32f
Cal cBackPr oj ect hi stogram ing 1 same as i g

=8u, 8s, 32f
Cal cEi genhj ect s img = 8u 1 ei g = 32f
Cal cd obal Ori entation mhi =32f ,ori ent 1 32f

=32f,mask = 8u
Cal cHi st i rT?:8u, 8s, 1 hi st ogr am

32

u
intgl. A2

OpenCV Reference Manual Supported I mage Attributes and Operation Modes A

Table A-1 Image Atributes and Operation Modes for Array-Processing Functions (continued)

Number
of
Function Input Format Channels Output Format
Cal cMoti onG adi ent mhi = 32f 1 ori ent =32f,
mask
Cal cOpti cal FIl owBM 8u 1 32f
Cal cOpti cal FIl owHS 8u 1 32f
Cal cOpti cal Fl owLK 8u 1 32f
Cal cOpti cal Fl owPyr LK img=8u 1 32f
Canthi ft 8u, 8s, 32f 1 n/a
Canny 8u 1 8u
Circle 8u - 64f 1-4 inplace
Circl eAA 8u 1,3 inplace
Cmp 8u - 64f 1-4 8u
CmpS 8u - 64f 1-4 8u
Convert Scal e 8u - 64f 1-4 8u - 64f, the
same channels
number
Copy 8u - 64f 1-4 same
Cor ner Ei genVal sAndVecs 8u, 8s, 32f 1 32f
Cor ner M nEi genVal 8u, 8s, 32f 1 32f
Count NonZer o 8u - 64f 1-4 64f
Cr ossProduct 32f, 64f 1 same
Cvt Pi XxToPl ane 8u - 64f input-2,3 8u - 64f
or4,
output - 1
Cvt Pl aneToPi x 8u - 64f input - 1, 8u - 64f
output -
23o0r4
Det 32f, 64f 1 64f
Dil ate 8u, 32f 1,3,4 same
Di st Transform 8u, 8s 1 32f
Dot Pr oduct 8u - 64f 1-4 64f

intgl. A3

OpenCV Reference Manual

Supported I mage Attributes and Operation Modes A

Table A-1 Image Atributes and Operation Modes for Array-Processing Functions (continued)

Number
of

Function Input Format Channels Output Format
Dr awCont our s contour, ing-= 1-4 inplace

8u - 64f
Ei genVWW 32f, 64f 1 same
El lipse 8u - 64f 1-4 inplace
El i pseAA 8u 1,3 inplace
Er ode 8u, 32f 1,34 same
Fi | | ConvexPol y 8u - 64f 1-4 inplace
FillPoly 8u - 64f 1-4 inplace
Fi ndChessBoar dCor ner Guesses 8u 1 n/a
Fi ndCont our s img = 8u, 8s 1 contour
Fi ndCor ner SubPi x i mg=8u, 8s, 1 n/a

32f
Flip 8u - 64f 1-4 same
Fl oodFi | | 8u, 32f 1 inplace
Cet Rect SubPi x 8u, 8s, 32f, 1 same or 32f or 64f

64f for8u & 8s
GoodFeat ur esToTr ack i mg=8u, 8s, 1 n/a

32f, eig =32f,

t enp = 32f
HoughLi nes i mg=8u 1 n/a
HoughLi nesP i mg=8u 1 n/a
HoughLi nesSDi v img=8u 1 n/a
| ngToObs_DCT i mg=8u 1 n/a
I nvert 32f, 64f 1 same
Lapl ace 8u, 8s, 32f 1 16s, 32f
Li ne 8u - 64f 1-4 inplace
Li neAA 8u 1,3 inplace
Mahal onobi s 32f, 64f 1 same
Mat chTenpl at e 8u, 8s, 32f 1 32f

intel.

OpenCV Reference Manual

Supported I mage Attributes and Operation Modes A

Table A-1 Image Atributes and Operation Modes for Array-Processing Functions (continued)

Number
of

Function Input Format Channels Output Format
Mat Mul Add 32f, 64f 1 same
Mat Mul AddEx 32f, 64f 1 same
Mean 8u - 64f 1-4 64f
Mean_St dDev 8u - 64f 1-4 64f
MeanShi ft 8u, 8s, 32f 1 n/a
M nMaxLoc 8u - 64f 1-4 CvPoi nt, 64f

(coi!'=0)
Monent s 8u - 64f 1-4 CvMonent s

(coi!'=0)
Mor phol ogy Ex 8u, 32f 1,3,4 same
Mul AddS 8u - 64f 1-4 same
Mul ti pl yAcc src = 8u, 8s, 1,3 inplace

32f

acc = 32f (same 1-3

channels number as

Src)
Nor m 8u - 64f 1-4 64f

(coi!=0, if

mask! =0)
O 8u - 64f 1-4 same
OoS 8u - 64f 1-4 same
Per specti vePr oj ect 32f, 64f 1 same
Pol yLi ne 8u - 64f 1-4 inplace
Pol yLi neAA 8u 1,3 inplace
Pr eCor ner Det ect 8u, 8s, 32f 1 32f
Put Text 8u - 64f 1-4 inplace
Pyr Down 8u, 8s, 32f 1,3 same
Pyr Segnent ati on 8u 1,3 same
Pyr Up 8u, 8s, 32f 1,3 same
RandNext none 1 32u

intgl. As

OpenCV Reference Manual

Supported I mage Attributes and Operation Modes A

Table A-1 Image Atributes and Operation Modes for Array-Processing Functions (continued)

Number
of

Function Input Format Channels Output Format
Rectangl e 8u - 64f 1-4 inplace
Runni ngAvg src = 8u, 8s, 1,3 inplace

32f

acc = 32f (same 1-3

channels number as

Src)
Sanpl eLi ne 8u - 64f 1-4 inplace
Segnent Mot i on 32f 1 32f
Set 8u - 64f 1-4 inplace
Setldentity 32f, 64f 1 same
Set Zero 8u - 64f 1-4 inplace
Snakel mage i ng =8u, 8s, 1 n/a

32f
Sobel 8u, 8s, 32f 1 16s, 32f
Squar eAcc src = 8u, 8s, 1,3 inplace

32f

acc = 32f (same 1-3

channels number as

Src)
St art Fi ndCont our s img=8u, 8s 1 contour
Sub 8u - 64f 1-4 same
SubRs 8u - 64f 1-4 same
SubsS 8u - 64f 1-4 same
Sum 8u - 64f 1-4 64f
SVD 32f, 64f 1 same
Thr eshol d 8u, 8s, 32f 1 same
Transpose 8u - 64f 1-4 same
UnDi stort 8u 1,3 same
UnDi st ort Once 8u 1,3 same

L}
intgl. At

OpenCV Reference Manual Supported I mage Attributes and Operation Modes A

Table A-1 Image Atributes and Operation Modes for Array-Processing Functions (continued)

Number
of
Function Input Format Channels Output Format
Updat eMot i onHi story mi =32f, silh= 1 mhi = 32f
8u, 8s
Xor 8u - 64f 1-4 same
Xor S 8u - 64f 1-4 same

L}
intel.

OpenCV Reference Manual Supported I mage Attributes and Operation Modes A

intgl. At

Glossary

arithmetic operation

background

blob

Burt’'s algorithm

CamShift

channel of interest
COl
connected component

corner

An operation that adds, subtracts, multiplies, or squares the
image pixel values.

A set of motionlessimage pixels, that is, pixels that do not
belong to any object moving in front of the camera. This
definition can vary if considered in other techniques of
object extraction. For example, if a depth map of the scene
is obtained, background can be defined as parts of scene that
are located far enough from the camera.

A region, either a positive or negative, that results from
applying the Laplacian to an image. See Laplacian pyramid.
An iterative pyramid-linking algorithm implementing a
combined segmentation and feature computation. The
algorithm finds connected components without a
preliminary threshold, that is, it works on a grayscal e image.

Continuously Adaptive Mean-SHIFT algorithm. Itisa
modification of MeanShift algorithm that can track an
object varying in size, e.g., because distance between the
object and the camera varies.

channel in the image to process.
See channel of interest.

A number of pixels sharing aside (or, in some cases, a
corner aswell).

An areawhere level curves multiplied by the gradient
magnitude assume aloca maximum.

Glossary-1

OpenCV Reference Manual

Glossary

down-sampling

earth mover distance

edge

EMD
flood filling

Gaussian pyramid

histogram

image features
L aplacian pyramid

Down-sampling conceptually decreases image size by
integer through replacing a pixel block with asingle pixel.
For instance, down-sampling by factor of 2 replacesa2 X 2
block with asingle pixel. In image processing convolution
of the original image with blurring or Gaussian kernel
precedes down-sampling.

minimal work needed to translate one point mass
configuration to another, normalized by the total
configuration mass. The EMD is aoptimal solution of
transportation problem.

A point at which the gradient assumes alocal maximum
along the gradient direction.

See earth mover distance.

Flood filling means that a group of connected pixels with
close valuesisfilled with, or is set to, acertain value. The
flood filling process starts with some point, called “seed”,
that is specified by function caller and then it propagates
until it reaches the image ROI boundary or cannot find any
new pixelsto fill dueto alarge differencein pixel values.

A set of images derived from each other with combination
of convolution with Gaussian kernel and down-sampling.
See down-sampling and up-sampling.

A discrete approximation of stochastic variable probability
distribution. The variable can be both a scalar value and a
vector. Histograms represent a simple statistical description
of an object, e.g., an image. The object characteristics are
measured during iterations through that object

See edge, ridge, and blob.

A set of images, which can be obtained by subtracting
upsampled images from the original Gaussian Pyramid, that
is, Lj = Gj — up-sample (Gj;+ 1) or Lj = Gj — up-sample

Glossary-2

OpenCV Reference Manual

Glossary

locally minimum

(down-sample (G;)), where L; are images from Laplacian
Pyramid and G; areimages from Gaussian Pyramid. See a so
down-sampling and up-sampling.

A triangle made of two boundary runsin hierarchical

interceptive areatriangle representation of contours, if the interceptive area of its base

LMIAT

line is smaller than both its neighboring triangles areas.

See locally minimum interceptive areatriangle.

mathematical morphologyA set-theoretic method of image analysisfirst devel oped by

memory storage

minimal enclosing circle

MHI
motion history image

optical flow

Matheron and Serra. The two basic morphol ogical
operations are erosion (thinning) and dilation (thickening).
All operationsinvolve an image A (object of interest) and a
kernel element B (structuring element).

Storage that provides the space for storing dynamic data
structures. A storage consists of aheader and a
double-linked list of memory blocks treated as a stack, that
is, the storage header contains a pointer to the block not
occupied entirely and an integer value, the number of free
bytes in this block.

A circlein aplanar point set whose points are entirely
located either inside or on the boundary of the circle.
Minimal means that there is no enclosing circle of asmaller
radius.

See motion history image.

Motion history image (MHI) represents how the motion
took place. Each MHI pixel has avalue of timestamp
corresponding to the latest motion in that pixel. Very early
motions, which occured in the past beyond a certain time
threshold set from the current moment, are cleared out. As
the person or object moves, copying the most recent
foreground silhouette as the highest values in the motion
history image creates alayered history of the resulting
motion.

An apparent motion of image brightness.

intel.

Glossary-3

OpenCV Reference Manual

Glossary

pixel value

region of interest

ridge

ROI

sequence

signature

snake

template matching

toleranceintervd

up-sampling

An integer or float point value that defines brightness of the
image point corresponding to this pixel. For instance, in the
case of 8u format images, the pixel value is an integer
number from 0O to 255.

A part of theimage or a certain color planein the image, or
both.

Sort of a skeletonized high contrast object within an image.
Ridges arefound at pointswhere the gradient isnon-zero (or
the gradient is above a small threshold).

Seeregion of interest.

A resizable array of arbitrary type elements located in the
memory storage. The sequence is discontinuous. Sequence
data may be divided into several continuous blocks, called
sequence blocks, that can be located in different memory
blocks.

Generalization of histograms under which characteristic
values with rather fine quantization are gathered and only
non-zero bins are dynamically stored.

An energy-minimizing parametric closed curve guided by
external forces.

Marking the image regions coinciding with the given
template according to a certain rule (minimum squared
difference or maximum correlation between the region and
template).

Lower and upper levels of pixel values corresponding to
certain conditions. See pixel value.

Up-sampling conceptually increases image size through
replacing asingle pixel with a pixel block. For instance,
up-sampling by factor of 2 replaces a single pixel with
a2 X 2 block. In image processing convolution of the
original image with Gaussian kernel, multiplied by the
squared up-sampling factor, follows up-sampling.

Glossary-4

| ndex

A

about this manual, 1-4
about this software, 1-1

Active Contours
energy function, 2-15
contour continuity, 2-16

contour continuity energy, 2-16
contour curvature energy, 2-16

external energy, 2-15
internal energy, 2-15
snake corners, 2-17
full snake energy, 2-16
Active Contours Function, 9-11
Snakel mage, 9-11
audience for this manual, 1-8

B

Backgroud Subtraction Functions, 9-3
Background subtraction
background, 2-1
background moddl, 2-1
Background Subtraction Functions
Acc, 9-3
MultiplyAcc, 9-4
RunningAvg, 9-5
SquareAcc, 9-4
bi-level image, 3-11, 3-15, 3-24
binary tree representation, 4-10
black-and-white image, 3-24
blob, 3-24

Block Matching, 2-20
Burt's algorithm, 3-17

Camera Cdlibration, 6-1

homography, 6-2
lens digtortion, 6-4
pattern, 6-3

Camera Cdlibration Functions

CalibrateCamera, 13-4
CalibrateCamera_64d, 13-5
FindChessBoardCornerGuesses, 13-11
FindExtrinsicCameraParams, 13-6
FindExtrinsicCameraParams_64d, 13-7
Rodrigues, 13-7

Rodrigues_64d, 13-8

UnDistort, 13-10

UnDistortInit, 13-9

UnDistortOnce, 13-9

camera parameters, 6-1

extrinsic, 6-1
rotation matrix, 6-1, 6-2
translation vector, 6-1, 6-2
intrinsic, 6-1
effective pixel size, 6-1
focal length, 6-1
location of the image center, 6-1
radial distortion coefficient, 6-1

camera undistortion functions, 6-4
Camshift algorithm, 2-9, 2-10, 2-12

cdculation of 2D orientation, 2-14
discrete distributions, 2-11

intel.

OpenCV Reference Manual

Index

dynamically changing distributions, 2-11
mass center calculation, 2-11
probability distribution image, 2-10
search window, 2-11
zeroth moment, 2-11
Camshift Functions, 9-9
CamShift, 9-9
MeanShift, 9-10
centroid, 2-11
channd of interest, 7-3
child node, 4-10
CNP, See corresponding node pair
codes
chain codes, 4-1
higher order codes, 4-1
COl, Seechanne of interest
conic fitting, 4-14
Contour Processing, 4-1
contours moments, 4-5
Douglas-Peucker approximation, 4-4

hierarchical representation of contours, 4-8
locally minimum interceptive areatriangle, 4-9

polygonal approximation, 4-1
Contour Processing Functions
ApproxChains, 11-3
ApproxPoly, 11-5
ContourArea, 11-8
ContourBoundingRect, 11-7
ContourFromContourTree, 11-11
ContoursMoments, 11-8
CreateContourTree, 11-10
DrawContours, 11-6
EndFindContours, 10-9
FindContours, 10-6
FindNextContour, 10-8
MatchContours, 11-9
MatchContourTrees, 11-12
ReadChainPoint, 11-5
StartFindContours, 10-7
StartReadChainPoints, 11-4
SubstituteContour, 10-9

Contour Retrieving

1-component
border, 3-3
border point, 3-3
hole, 3-3
hole border, 3-3
outer border, 3-3
4-connected pixels, 3-1
8-connected pixels, 3-1
algorithm, 3-4
border following procedure, 3-5
chain code, See Freeman method
contour, See 1-component border
Freeman method, 3-3 See also chain code
hierarchical connected components, 3-2
polygonal representation, 3-4
contours moments, 4-5
conventions
font, 1-9
naming, 1-9
convergence, 6-15
convexity defects, 4-16
corresponding node pair, 4-13
covariance matrix, 5-1

D

Data Types supported, 1-3
decomposition coefficients, 5-2
deque, 7-5
Distance Transform Function
DistTransform, 10-34
Douglas-Peucker approximation, 4-4
Drawing Primitives Functions
Circle, 14-69
Ellipse, 14-69
EllipseAA, 14-71
FillConvexPoly, 14-72
FillPoly, 14-71
GetTextSize, 14-75
InitFont, 14-74
Line, 14-67
LineAA, 14-67

intel.

Index-2

OpenCV Reference Manual

Index

PolyLine, 14-73
PolyLineAA, 14-73
PutText, 14-75
Rectangle, 14-68

Dynamic Data Structures

Graphs
ClearGraph, 14-53
CreateGraph, 14-45
FindGraphEdge, 14-50
FindGraphEdgeByPtr, 14-51
GetGraphVtx, 14-53
GraphAddEdge, 14-47
GraphAddEdgeByPtr, 14-48
GraphAddVtx, 14-45
GraphEdgel dx, 14-54
GraphRemoveEdge, 14-49
GraphRemoveEdgeByPtr, 14-49
GraphRemoveVtx, 14-46
GraphRemoveVtxByPtr, 14-46
GraphVitxDegree, 14-51
GraphVitxDegreeByPtr, 14-52
GraphVixldx, 14-53

Memory Functions
ClearMemStorage, 14-22
CreateChildMemStorage, 14-21
CreasteMemStorage, 14-21
ReleaseMemStorage, 14-22
RestoreM emStoragePos, 14-23

Sequence Reference
cvSegBlock Structure Definition, 14-27
cvSequence Structure Definition, 14-25
Standard Kinds of Sequences, 14-26
Standard Types of Sequence Elements, 14-26

Sequences
ClearSeq, 14-33
CreateSeq, 14-28
CvtSeqToArray, 14-35
GetSegElem, 14-34
M akeSegHeaderForArray, 14-35
SegElemldx, 14-34
Seqlinsert, 14-32
SeqPop, 14-30
SeqPopFront, 14-31
SegPopMulti, 14-32

SegPush, 14-29
SegPushFront, 14-30
SegPushMuilti, 14-31
SegRemove, 14-33
SetSeqBlockSize, 14-29
Sets
ClearSet, 14-43
CreateSet, 14-41
GetSetElem, 14-42
SetAdd, 14-41
SetRemove, 14-42
Writing and Reading Sequences
EndWriteSeq, 14-38
FlushSeqWriter, 14-38
GetSeqReaderPos, 14-40
SetSeqReaderPos, 14-40
StartAppendToSeq, 14-36
StartReadSeq, 14-39
StartWriteSeq, 14-37

Dynamic Data Structures Reference
Memory Storage
cvMemBlock Structure Definition, 14-20
cvMemStorage Structure Definition, 14-20
cvMemStoragePos Structure Definition,
14-20

E

Earth mover distance, 3-27

Eigen Objects, 5-1

Eigen Objects Functions
CalcCovarMatrixEx, 12-3
CalcDecompCoeff, 12-5
CalcEigenObjects, 12-4
EigenDecomposite, 12-6
EigenProjection, 12-7

eigenvectors, 5-1

dlipsefitting, 4-14

Embedded Hidden Markov Models, 5-2

Embedded Hidden Markov Models Functions
Create2DHMM, 12-12
CreateObslnfo, 12-13
EstimateHMM StateParams, 12-17

intel.

Index-3

OpenCV Reference Manual

Index

EstimateObsProb, 12-18
EstimateTransProb, 12-17
EViterbi, 12-18
ImgToObs_DCT, 12-14
InitMixSegm, 12-16
MixSegmL 2, 12-19
Release2DHMM, 12-13
ReleaseObslInfo, 12-14
UniformlmgSegm, 12-15
EMD, See Earth mover distance
error handling, 1-3
Estimators
ConDensation algorithm, 2-23
discrete Kalman estimator, 2-22
Kalman filter, 2-22
measurement update, 2-21
equations, 2-23
state estimation programs, 2-20
system model, 2-21
system parameters, 2-21
system state, 2-20
time update, 2-21
equations, 2-23
Estimators Functions, 9-16
ConDenslnitSampl eSet, 9-18
ConDensUpdatebyTime, 9-19
CreateConDensation, 9-17
CreateKalman, 9-16
KamanUpdateByMeasurement, 9-17
KamanUpdateBy Time, 9-17
ReleaseConDensation, 9-18
ReleaseK alman, 9-16

F

Features, 3-5
Canny edge detection, 3-11

differentiation, 3-12
edge thresholding, 3-13
hysteresisthresholding, 3-13
image smoothing, 3-12
non-maximum suppression, 3-12
streaking, 3-13

corner detection, 3-11
feature detection, 3-10
Fixed Filters, 3-5
convolution primitives, 3-6
first Sobd derivative operators, 3-6
second Sobel derivative operators, 3-7
third Sobel derivative operators, 3-9
Hough transform, 3-14
multidimentsional Hough Transform, 3-14 See also
standard Hough transform, 3-14
Optimal Filter Kernels with Floating Point
Coefficients
first derivativefilters, 3-9
optimal filter kernels with floating point
coefficients, 3-9
L aplacian approximation, 3-10
second derivativefilters, 3-10
progressive probabilistic Hough Transform, 3-14
See also Hough transform, 3-14
standard Hough Transform, 3-14 See also Hough
transform, 3-14
Features Functions
Feature Detection Functions
Canny, 10-11
CornerEigenValsandVecs, 10-12
CornerMinEigenval, 10-13
FindCornerSubPix, 10-14
GoodFeaturesToTrack, 10-16
PreCornerDetect, 10-12
Fixed Filters Functions
Laplace, 10-10
Sobel, 10-10
Hough Transform Functions
HoughL ines, 10-17
HoughLinesP, 10-19
HoughL inesSDiv, 10-18
Flood Filling
4-connectivity, 3-25
8-connectivity, 3-25
definition, 3-25
seed, 3-25
Flood Filling Function
FloodFill, 10-40

intel.

Index-4

OpenCV Reference Manual

Index

flush, 7-7

focal length, 6-2

font conventions, 1-9
function descriptions, 1-8

G

Gabor transform, 3-29
Gaussian window, 2-19
GDI draw functions, 7-15
geometric image formation, 6-10
Geometry
convexity defects, 4-16
ellipsefitting, 4-14
fitting of conic, 4-14
linefitting, 4-15
weighted least squares, 4-16
Geometry Data Types, 11-25
cvConvexityDefect Structure Definition, 11-25
Geometry Functions
CalcPGH, 11-23
CheckContourConvexity, 11-21
ContourConvexHull, 11-18
ContourConvexHullApprox, 11-20
ConvexHull, 11-17
ConvexHullApprox, 11-18
ConvexityDefects, 11-21
FitEllipse, 11-12
FitLine2D, 11-13
FitLine3D, 11-15
MinAreaRect, 11-22
MinEnclosingCircle, 11-24
Project3D, 11-16
Gesture Recognition
algorithm, 6-16
homography matrix, 6-18
image mask, 6-16
probability density, 6-17
Gesture Recognition Functions
CalclmageHomography, 13-23
CalcProbDensity, 13-24
CreateHandM ask, 13-23

FindHandRegion, 13-21
FindHandRegionA, 13-22
MaxRect, 13-25
graph
non-oriented, 7-13
oriented, 7-13
graphs, 7-11
grayscaleimage, 3-11, 3-15, 3-20, 3-24, 7-2, 7-15
Green'sformula, 4-5

H

hardware and software requirements, 1-3
header, 7-4, 7-10
hierarchical representation of contours, 4-8
Histogram
analyzing shapes, 3-26
bayesian-based object recognition, 3-26
content based retrieval, 3-26
definition, 3-25
histogram back-projection, 2-10
signature, 3-27
Histogram Data Types, 10-57
Histogram Functions
CalcBackProject, 10-51
CalcBackProjectPatch, 10-52
CalcContrastHist, 10-55
CacEMD, 10-54
CalcHist, 10-50
CompareHist, 10-48
CopyHist, 10-49
CreateHist, 10-41
GetHistValue 1D, 10-45
GetHistValue 2D, 10-45
GetHistValue 3D, 10-46
GetHistValue nD, 10-46
GetMinMaxHistValue, 10-47
MakeHistHeaderForArray, 10-42
NormalizeHist, 10-47
QueryHistValue 1D, 10-43
QueryHistValue 2D, 10-43
QueryHistValue 3D, 10-44

intel.

Index-5

OpenCV Reference Manual

Index

QueryHistValue_nD, 10-44
ReleaseHist, 10-42
SetHistThresh, 10-50
ThreshHist, 10-48

HMM, See Embedded Hidden Markov Models

homography, 6-2

homography matrix, 6-2, 6-18

Horn & Schunck Technique, 2-19
Lagrangian multiplier, 2-19

HT, See Hough Transform in Features

Hu invariants, 3-15

Hu moments, 6-18

I

Image Functions, 7-1

Image Functions Reference
Copylmage, 14-14
Createlmage, 14-8
Createl mageData, 14-10
Createl mageHeader, 14-7
GetlmageRawData, 14-12
InitimageHeader, 14-13
Releaselmage, 14-9
ReleaselmageData, 14-10
Releasel mageHeader, 14-9
SetlmageCOl, 14-11
SetimageData, 14-11
SetlmageROl, 14-12

Image Statistics Functions
CountNonZero, 10-20
GetCentra Moment, 10-25
GetHuM oments, 10-27

GetNormalizedCentral Moment, 10-26

GetSpatial M oment, 10-25
Mean, 10-21
Mean_StdDev, 10-21
MinMaxLoc, 10-22
Moments, 10-24

Norm, 10-22

SumPixels, 10-20

Intel® Image Processing Library, 1-1, 7-1

IPL, Seelntel® Image Processing Library

L

Lagrange multiplier, 4-15

least squares method, 4-15

lens ditortion, 6-2

distortion coefficients

radial, 6-4
tangenial, 6-4

line fitting, 4-15

LMIAT, Seelocally minimum interceptive areatriangle

Lucas & Kanade Technique, 2-19

M

Mahalanobis distance, 6-18
manual organization, 1-4
mathematical morphology, 3-19
Matrix Operations, 7-15
Matrix Operations Data Types

cvMat Structure Definition, 14-56

cvMatArray Structure Definition, 14-56
Matrix Operations Functions

Add, 14-58

Alloc, 14-56

AllocArray, 14-57

Copy, 14-63

CrossProduct, 14-60

Det, 14-62

DotProduct, 14-59

Free, 14-57

FreeArray, 14-57

Invert, 14-62

Mahalonobis, 14-64

Mul, 14-60

MulTransposed, 14-61

PerspectiveProject, 14-66

Scale, 14-59

Setldentity, 14-64

SetZero, 14-63

Sub, 14-58

intel.

Index-6

OpenCV Reference Manual

Index

SVD, 14-65
Trace, 14-62
Transpose, 14-61

mean location, 2-11

Mean Shift algorithm, 2-9

memory block, 7-4

memory storage, 7-4

M-estimators, 4-15

MHT, See multidimesiona Hough transformin

Features

model plane, 6-2

moire, 6-8

Morphology
angle resolution, 3-29
black hat, 3-23
CIE Lab model, 3-29
closing equation, 3-21
dilation, 3-19
dilation formula, 3-20
dilation formulain 3D, 3-22
dilationin 3D, 3-21
Earth mover distance, 3-27
erisonin 3D, 3-21
erosion, 3-19
erosion formula, 3-20
erosion formulain 3D, 3-23
flow matrix, 3-28
ground distance, 3-29
lower boundary of EMD, 3-30
morphologicd gradient function, 3-23
object of interest, 3-19
opening equation, 3-21
optimal flow, 3-28
scal e resolution, 3-29
structuring element, 3-19
thickening, See dilation
thinning, See erosion
top hat, 3-23

Morphology Functions
CreateStructuringElementEx, 10-30
Dilate, 10-32
Erode, 10-31

MorphologyEx, 10-33
Rel easeStructuringElement, 10-31
Motion Higtory Image, 2-3
motion representation, 2-2
motion gradient image, 2-3
regional orientation, 2-6
motion segmentation, 2-7
downward stepping floodfill, 2-7
Motion Templates
motion template images, 2-2
normal optical flow method, 2-2
Motion Templates Functions, 9-6
CalcGlobalOrientation, 9-7
CacMotionGradient, 9-6
SegmentMotion, 9-8
UpdateMotionHistory, 9-6

N
node
child, 4-10
parent, 4-10
root, 4-10
trivial, 4-13
node distance, 4-13
node weight, 4-13

non-coplanar points, See also non-degenerate points,

6-14

non-degenerate points, See aso hon-coplanar points,

6-14
non-maxima suppression, 4-3
notational conventions, 1-8

O

object model pseudoinverse, 6-14

online version, 1-8

opticd flow, 2-18

Optical Flow Functions, 9-12
CalcOpticad FlowBM, 9-13
CalcOpticd FlowHS, 9-12

intel.

Index-7

OpenCV Reference Manual

Index

CalcOpticalFlowLK, 9-13
CalcOpticalFlowPyrLK, 9-14

P

parent node, 4-10

perspective distortion, 6-13

perspective model, 6-10

pinhole model, See perspective model

Pixel Access Macros, 14-14

Pixel Access Macros Reference
CV_INIT_PIXEL_POS, 14-16
CV_MOVE, 14-17
CV_MOVE_PARAM, 14-18
CV_MOVE_PARAM_WRAP, 14-18
CV_MOVE _TO, 14-16
CV_MOVE_WRAP, 14-17

Pixel Access Macros Structures
cvPixe Position Structures, 14-14

platforms supported, 1-4

polygonal approximation, 4-1
k-cosine curvature, 4-2
L1 curvature, 4-2
Rosenfel d-Johnston algorithm, 4-2
Teh and Chin algorithm, 4-3

POS, See pose from orthography ans scaling

pose, 6-10
pose approximation method, 6-11
pose from orthography and scaling, 6-11
POSIT
algorithm, 6-13
focal length, 6-14
geometric image formation, 6-10
object image, 6-14
object model, 6-14
pose approximation method, 6-11

pose from orthography and scaling, 6-11

POSIT adgorithm, 6-9

POSIT Functions
CreatePOSITObject, 13-19
POSIT, 13-19

Rel easePOSITObject, 13-20
PPHT, Seeprogressive probabilistic Houghtransformin
Features
prefix, in function names, 1-9, 1-10
PUSH version, 7-6
Pyramid, 10-56
Pyramid Data Types
cvConnectedComp Structure Definition, 10-56

Pyramid Functions
PyrDown, 10-28
PyrSegmentation, 10-29
PyrUp, 10-28

Pyramids

down-sampling, 3-15
Gaussan, 3-15
image segmentation, 3-17

hierarchical computing structure, 3-17
hierarchical smoothing, 3-17
segmentation, 3-17

Laplacian, 3-15
son-father relationship, 3-17
up-sampling, 3-16

R

radial distortion, 6-2

radial distortion coefficients, 6-4
region of interest, 7-3

related publications, 1-8

RLE coding, 4-1

ROI, Seeregion of interest

root node, 4-10
Rosenfeld-Johnston agorithm, 4-2
rotation matrix, 6-5

rotation vector, 6-5

S

scalar factor, 6-3
scaled orthographic projection, See also
weak-perspective projection model, 6-11

intel.

OpenCV Reference Manual

Index

scanlines, 6-6

Sequence Reference, 14-25

sequences, 7-5

sets, 7-8

shape partitioning, 4-12

SHT, See standard Hough transform in Features

stochastic variable, 3-15

synthesized image, 6-5

System Functions
GetLibrarylnfo, 15-2
LoadPrimitives, 15-1

T

tangential distortion coefficients, 6-4
Teh and Chin agorithm, 4-3
three sigmasrule, 2-1

Threshold Functions
AdaptiveThreshold, 10-36
Threshold, 10-38

trivial node, 4-13

U

Use of Eigen Object Functions, 12-7
Use of Eigen Objects Functions
cvCalcEigenObjectsin Callback Mode, 12-9
cvCalcEigenObjects in Direct Access Mode, 12-8
Utility Functions
AbsDiff, 14-76
AbsDiffS, 14-77
bCartToPolar, 14-87
bFastArctan, 14-84
bFastExp, 14-88
bFastLog, 14-88
blnvSart, 14-86
bRand, 14-89
bReciprocal, 14-87
bSgrt, 14-85
ConvertScae, 14-81
CvtPixToPlane, 14-80

CvtPlaneToPix, 14-80
Filllmage, 14-90
GetRectSubPix, 14-84
InitLinelterator, 14-82
InvSqrt, 14-86
KMeans, 14-91
MatchTemplate, 14-77
RandInit, 14-89
RandSetRange, 14-90
SampleLine, 14-83
Sart, 14-85

Vv

vectoring algorithms, 3-1

View Morphing, 6-5
moire, 6-8
scanlines, 6-6
warped image, 6-6

view morphing algorithm, 6-6

View Morphing Functions
DeleteMoire, 13-18
DynamicCorrespondMulti, 13-15
FindFundamentalMatrix, 13-12
FindRuns, 13-14
MakeAlphaScanlines, 13-16
MakeScanlines, 13-13
MorphEpilinesMulti, 13-16
PostWarpl mage, 13-17
PreWarplmage, 13-13

W

warped image, 6-6

weak-perspective projection, 6-12
weak-perspective projection model, 6-11
welghted least squares, 4-16

world coordinate system, 6-2

intel.

Index-9

