

ANÁLISIS MATEMÁTICO II Examen Final 18/02/2025

APELLIDO DEL ALUMNO:	NOMBRE:
CORRIGIÓ:	. REVISÓ:

T1	T2	P1	P2	P3	P4	CALIFICACIÓN

Todas las respuestas deben ser justificadas adecuadamente para ser tenidas en cuenta. No resolver el examen en lápiz. Duración del examen: 2 horas

Condición de aprobación (6 puntos): tres ejercicios correctamente resueltos (uno de T1 o T2 y dos de P1, P2, P3 o P4).

- T1) a) **Enuncie** el teorema de la divergencia con las hipótesis necesarias.
- b) **Determine** el valor de número real **a** tal que el flujo de \overline{f} (x,y,z) = (2xy, z y², 2 **a** z) a través de la superficie frontera del cuerpo V, sea igual a 8 veces el volumen de V.
- T2) a) **Defina** L_C (curva de nivel c) para un campo escalar f de dos variables. ¿En qué condiciones se puede asegurar que ∇f es perpendicular a L_C en un punto (x_0, y_0) que pertenece a dicha curva?
- b) **Obtenga** la recta (en R^2) perpendicular a la curva de nivel **1** del campo escalar z = f(x, y) en el punto (0,0), siendo z = f(x, y) la función definida implícitamente por la ecuación : $z^3 + y + e^{xz} 2 = 0$
- P1- **Obtenga** α_0 el plano normal a la curva C en (1,0,1), sabiendo que C queda definida por la intersección de las superficies de ecuaciones $z=\phi(x)-y$ \wedge z=x+y, siendo $\phi(x)$ la curva solución de y''=6 x con y(0)=y'(0)=0.
- P2 Sea $\bar{F}(x, y, z) = (2xy, x^2 + z^2, 2yz)$, **calcule**, mediante dos procedimientos distintos, el trabajo de \bar{F} desde A = (2, 4, 4) hasta B = (0, 0, 0) a lo largo de la curva $C: \begin{cases} y = x^2 \\ z = 2x \end{cases}$.
- P3 **Exprese y calcule** el área de la porción de la superficie de ecuación $z^2 = x^2 + y^2$ con $z \ge 0$ que queda dentro de $x^2 + y^2 + z^2 = 8$ y fuera de $x^2 + y^2 + z^2 = 2$.
- P4 Exprese la masa del cuerpo (con todos sus límites de integración) definido por: $x^2 + z^2 \le 4$, $x + z \ge 2$, $y \le 3$, en el 1º octante, si su densidad en cada punto es proporcional a la distancia desde dicho punto al plano yz. No es necesario resolver la integral.