

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Examen Final 29-07-25

Apellido y nombre del alumno/a:.....

Corrigió:.....Revisó:.....Revisó:....

1.1)	1.2)	2.1)	2.2)	3.1)	3.2)	4)	5.1)	5.2)	Calificación

Todas las respuestas deben estar justificadas adecuadamente para ser tenidas en cuenta.

No resolver el examen en lápiz. Duración del examen: 2 horas.

Condición de aprobación (6 puntos): tres ejercicios correctamente resueltos.

- **1)** Dado el punto A(2, 0, 3) y la recta $\mathbb{L} : \begin{cases} x + y = 1 \\ -y + z = -1 \end{cases}$
 - **1.1)** Encontrar el simétrico del punto A con respecto a la recta \mathbb{L} .
 - **1.2)** Hallar la distancia del punto A a la recta \mathbb{L} .
- 2) Sea la transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que $M(T) = \begin{pmatrix} 3m & 12m & m \\ m & 4m & \frac{1}{3} \end{pmatrix}$ es la matriz asociada a la transformación lineal T en las bases canónicas de \mathbb{R}^3 y \mathbb{R}^2 .
 - **2.1)** Calcular el o los valores reales de *m* tal que la dimensión de la imagen de *T* sea igual a 1.
 - **2.2)** Para m = -1, encontrar la expresión analítica del núcleo de T, una base y su dimensión.
- 3) Indicar el valor de verdad de las siguientes afirmaciones. Justificar su respuesta.
 - **3.1)** Si $\lambda = 1$ es autovalor de la matriz $A \in \mathbb{R}^{n \times n}$ entonces, la matriz $B = A I_n$ es inversible, siendo I_n la matriz identidad.
 - **3.2)** Si $z \in \mathbb{C}$, entonces $z.\bar{z} = |z|^2$. (\mathbb{C} : conjunto de los números complejos).
- **4)** Sea la transformación lineal $F: \mathbb{P}_3[x] \to \mathbb{R}^3/M_{BE}(F) = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, con

 $B = \{1, x, x^2, x^3\}$ una base de $\mathbb{P}_3[x]$ y E la base canónica de \mathbb{R}^3 . Hallar la matriz asociada a F en las bases B' y E: $M_{B'E}(F)$, si $B' = \{x^3 + 1, 2x^2, -x, -1\}$.

- **5)** Sea la ecuación de la superficie $\sigma: \frac{x^2}{50} + \frac{y^2}{32} = z$
 - **5.1)** Determinar k real tal que la intersección de σ con el plano z = k sea una elipse con distancia focal igual a 6. Dar las ecuaciones paramétricas de dicha curva.
 - **5.2)** Identificar a la superficie σ , encontrar sus trazas con los planos coordenados. Realizar una presentación gráfica de la superficie.

Respuestas:

1.1)
$$A' = (-2, 2, -3),$$

1.2)
$$dist(A, \mathbb{L}) = \sqrt{14}$$

2.1)
$$m \in \{0, 1\}$$

2.2)
$$Nu(T) = \{(x, y, z) \in \mathbb{R}^3 / x + 4y = 0, z = 0\}$$

- 3.1) Falso

3.2) Verdadero

$$4.M_{B'E}(F) = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
5.1) $k = \frac{1}{2}$, $C = \{(x, y, z) = (5cos(t), 4sen(t), \frac{1}{2}) \land t \in [0, 2\pi)\}$

5.1)
$$k = \frac{1}{2}$$
, $C = \{(x, y, z) = (5\cos(t), 4\sin(t), \frac{1}{2}) \land t \in [0, 2\pi)\}$

5.2) Paraboloide elíptico

