

ÁLGEBRA Y GEOMETRÍA ANALÍTICA

Examen Final

25-09-2025

			REVISÓ:		

Todas las respuestas deben ser justificadas adecuadamente para ser tenidas en cuenta. No resolver el examen en lápiz. Duración del examen: 2 horas Condición de aprobación (6 puntos): tres ejercicios correctamente resueltos. Se le mostrará su examen una vez corregido.

- 1) Considere la recta s: $\begin{cases} b. x + y = z \\ x + y + z = 2 \end{cases}$ y la recta r que pasa por los puntos (a, 1, -1) y (0,1,0).
 - a) Analice si existen valores reales de *a* y *b* para que resulten paralelas.
- b) Demuestre que, para b = 1, existe un valor de a para el cual las rectas se cortan y encuentre la ecuación del plano que determinan en ese caso.
- 2) Dada una matriz cuadrada $A=(A_1\quad A_2\quad A_3\quad A_4)$, donde A_i son sus columnas, se verifica que

$$|-5A_1 \quad A_3 - A_2 \quad 2A_4 \quad -A_3| = |A_2 \quad A_1 \quad 2A_4 \quad -A_3| + 2.$$

- a) Analice si existe A^{-1} . Justifique.
- b) En caso afirmativo, calcule $det(B^{-1})$ si $B = 3A^tA$. En caso negativo, explique por qué no es posible. Justifique cada paso del cálculo.
- 3) Indique si son verdaderas o falsas las siguientes afirmaciones. Justifique.
 - a) "Si $T: \mathbb{R}^n \to \mathbb{R}^n$ es un endomorfismo para el cual $\lambda = 0$ es autovalor, T no es sobreyectivo".
- b) "Existen sólo dos números complejos que verifican $z. \bar{z} = 4$; $|Re(z)| = \sqrt{3} |Im(\bar{z})|$."
- 4) Sea la superficie de ecuación $x^2 + A^2 y^2 z^2 = 2A x$.
 - a) Halle *A* para que la ecuación represente una superficie cilíndrica, indique de qué superficie se trata y grafique.
 - b) Halle A para que la intersección de la superficie con el plano xy sea la curva parametrizada por $\vec{\gamma}(t) = (2 + 2\cos(t), sen(t), 0), t \in [0,2\pi]$. ¿De qué superficie se trata? Grafique.
- 5) Considere una transformación lineal $T: \mathbb{R}^3 \to P_2$ que verifique las siguientes condiciones: $T(1,1,1) = x^2$ T(1,1,0) = 1-x $T(1,0,0) = 1-x+x^2$
 - a) ¿Es única? Fundamente su respuesta.
 - b) Encuentre la matriz de T respecto de las bases canónica para \mathbb{R}^3 y $B = \{1; x; x^2\}$ para el codominio, y compruebe que el rango de la matriz coincide con la dimensión de la imagen de la transformación lineal.