

ANÁLISIS MATEMÁTICO II Examen Final 25/09/2025

APELLIDO DEL ALUMNO: NOMBRE: NOMBRE:							
COR	RIGIÓ:		REVISÓ:				
					_ , _,,		
	T1	T2	P1	P2	P3	P4	CALIFICACIÓN

Todas las respuestas deben ser justificadas adecuadamente para ser tenidas en cuenta.

No resolver el examen en lápiz. Duración del examen: 2 horas

Condición de aprobación (6 puntos): tres ejercicios correctamente resueltos (uno de T1 o T2 y dos de P1, P2, P3 o P4).

Su examen se mostrará una vez corregido.

- T1) a. Demuestre la independencia de la trayectoria para integrales de línea.
 - **b.** Dado el campo vectorial definido por $\vec{f}(x,y) = (4xy^2 + 1, 4x^2y)$, calcule el flujo de \vec{f} a lo largo de la curva parametrizada por $\vec{\gamma}$: $[0,\pi] \to R^2$ tal que $\vec{\gamma}(t) = (tsen(t), tcos(t))$ orientada con su parametrización natural.
- T2) a. Enuncie el teorema de cambio de variables en las integrales dobles.
 - **b.** Mediante el cambio de variables definido por la transformación $\vec{\phi}(u,v) = (u+2v, 2u+v)$, la región D del plano (xy) se transforma en la región D^* del plano (uv). Calcule el $\text{Á}rea(D^*)$ si se sabe que Área(D) = 12.
- **P1)** Sea $f: R^3 \to R$ tal que $f(x, y, z) = 3x^2 5y + 2z$, calcule la derivada direccional $f'(\vec{X}_0, \check{u})$ cuando \check{u} está orientado hacia el origen de coordenadas y es normal a la superficie de ecuación $x^2 + y^2 + z^2 = 6$ en el punto $\vec{X}_0 = (2,1,1)$.
- **P2)** Si el campo $\vec{F}(x, y, z) = (x + sen(yz), y + sen(xz), 3z + 2)$, calcule el flujo de \vec{F} a través de la superficie abierta S de ecuación $z = 9 x^2 y^2 con z \ge 0$ orientada con z^+ .
- **P3)** Sea $f: R^2 \to R$, $f \in C^1(R^2)$. Calcule aproximadamente f(1.98, 2.01) con un polinomio de Taylor de 2° grado si se conoce que f(2,2) = 5 es un extremo local y que la matriz jacobiana de $\overrightarrow{\nabla f}$ en el punto (2,2) es $D(\overrightarrow{\nabla f})_{(2,2)} = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$.
- **P4)** Calcule la circulación del campo $\vec{f}: R^3 \to R^3/$ $f(x,y,z) = (x^2 + z^2, x^2, 3yz)$ a lo largo de la curva C intersección de $x^2 + y^2 = 9$ con x + z = 3. Indique gráficamente la orientación escogida para circular a lo largo de C.